Keywords: switchpoint |  bayesian |  mcmc |  mcmc engineering |  formal tests |  imputation |  Download Notebook

Summary

We use a switchpoint model from Fonnesbeck's Bios 8366 course to illustrate both various formal convergence test and data imputation using the posterior predictives

%matplotlib inline
import numpy as np
import scipy as sp
import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.width', 500)
pd.set_option('display.max_columns', 100)
pd.set_option('display.notebook_repr_html', True)
import seaborn as sns
sns.set_style("whitegrid")
sns.set_context("poster")

A switchpoint model

This is a model of coal-mine diasaters in England. Somewhere around 1900, regulation was introduced, and in response, miing became safer. But if we were forensically looking at such data, we would be able to detect such change using a switchpoint model. We’d then have to search for the causality.

Data

disasters_data = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
                         3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
                         2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 0, 0,
                         1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
                         0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
                         3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
                         0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])

n_years = len(disasters_data)

plt.figure(figsize=(12.5, 3.5))
plt.bar(np.arange(1851, 1962), disasters_data, color="#348ABD")
plt.xlabel("Year")
plt.ylabel("Disasters")
plt.title("UK coal mining disasters, 1851-1962")
plt.xlim(1851, 1962);

png

One can see the swtich roughly in the picture above.

Model

We’ll assume a Poisson model for the mine disasters; appropriate because the counts are low.

\[y \vert \tau, \lambda_1, \lambda_2 \sim Poisson(r_t)\\ r_t = \lambda_1 \,{\rm if}\, t < \tau \,{\rm else}\, \lambda_2 \,{\rm for}\, t \in [t_l, t_h]\\ \tau \sim DiscreteUniform(t_l, t_h)\\ \lambda_1 \sim Exp(a)\\ \lambda_2 \sim Exp(b)\\\]

The rate parameter varies before and after the switchpoint, which itseld has a discrete-uniform prior on it. Rate parameters get exponential priors.

import pymc3 as pm
from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

pm.model_to_graphviz(coaldis1)

svg

Let us interrogate our model about the various parts of it. Notice that our stochastics are logs of the rate params and the switchpoint, while our deterministics are the rate parameters themselves.

coaldis1.vars #stochastics
[early_mean_log__, late_mean_log__, switchpoint]
type(coaldis1['early_mean_log__'])
pymc3.model.FreeRV
coaldis1.deterministics #deterministics
[early_mean, late_mean]

Labelled variables show up in traces, or for predictives. We also list the “likelihood” stochastics.

coaldis1.named_vars
{'disasters': disasters,
 'early_mean': early_mean,
 'early_mean_log__': early_mean_log__,
 'late_mean': late_mean,
 'late_mean_log__': late_mean_log__,
 'switchpoint': switchpoint}
coaldis1.observed_RVs, type(coaldis1['disasters'])
([disasters], pymc3.model.ObservedRV)

The DAG based structure and notation used in pymc3 and similar software makes no distinction between random variables and data. Everything is a node, and some nodes are conditioned upon. This is reminiscent of the likelihood being considered a function of its parameters. But you can consider it as a function of data with fixed parameters and sample from it.

You can sample from the distributions in pymc3.

plt.hist(switchpoint.random(size=1000));

png

early_mean.transformed, switchpoint.distribution
(early_mean_log__,
 <pymc3.distributions.discrete.DiscreteUniform at 0x129f73b00>)
switchpoint.distribution.defaults
('mode',)
ed=pm.Exponential.dist(1)
print(type(ed))
ed.random(size=10)
<class 'pymc3.distributions.continuous.Exponential'>





array([ 0.82466332,  0.10209366,  3.35122292,  0.22771453,  1.35351198,
        0.697511  ,  0.04523932,  0.36786232,  0.12309128,  0.90947997])
type(switchpoint), type(early_mean)
(pymc3.model.FreeRV, pymc3.model.TransformedRV)

Most importantly, anything distribution-like must have a logp method. This is what enables calculating the acceptance ratio for sampling:

switchpoint.logp({'switchpoint':55, 'early_mean_log__':1, 'late_mean_log__':1})
array(-4.718498871295094)

Ok, enough talk, lets sample:

with coaldis1:
    #stepper=pm.Metropolis()
    #trace = pm.sample(40000, step=stepper)
    trace = pm.sample(40000)
Multiprocess sampling (2 chains in 2 jobs)
CompoundStep
>NUTS: [late_mean, early_mean]
>Metropolis: [switchpoint]
Sampling 2 chains: 100%|██████████| 81000/81000 [00:53<00:00, 1522.59draws/s]
The number of effective samples is smaller than 25% for some parameters.
pm.summary(trace[4000::5])
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
switchpoint 38.983542 2.421821 0.027554 33.000000 43.000000 7206.241420 0.999931
early_mean 3.070557 0.283927 0.002575 2.537039 3.641404 13267.970663 0.999966
late_mean 0.936715 0.118837 0.001056 0.709629 1.174810 13197.164982 1.000034
t2=trace[4000::5]
pm.traceplot(t2);
//anaconda/envs/py3l/lib/python3.6/site-packages/matplotlib/axes/_base.py:3449: MatplotlibDeprecationWarning: 
The `ymin` argument was deprecated in Matplotlib 3.0 and will be removed in 3.2. Use `bottom` instead.
  alternative='`bottom`', obj_type='argument')

png

A forestplot gives us 95% credible intervals…

pm.forestplot(t2);

png

pm.autocorrplot(t2);

png

plt.hist(trace['switchpoint']);

png

pm.trace_to_dataframe(t2).corr()
switchpoint early_mean late_mean
switchpoint 1.000000 -0.257867 -0.235158
early_mean -0.257867 1.000000 0.058679
late_mean -0.235158 0.058679 1.000000

Imputation

Imputation of missing data vaues has a very nice process in Bayesian stats: just sample them from the posterior predictive. There is a very nice process to do this built into pync3..you could abuse this to calculate predictives at arbitrary points. (There is a better way for that, though, using Theano shared variables, so you might want to restrict this process to the situation where you need to impute a few values only).

Below we use -999 to handle mising data:

disasters_missing = np.array([ 4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])
disasters_masked = np.ma.masked_values(disasters_missing, value=-999)
disasters_masked
masked_array(data = [4 5 4 0 1 4 3 4 0 6 3 3 4 0 2 6 3 3 5 4 5 3 1 4 4 1 5 5 3 4 2 5 2 2 3 4 2
 1 3 -- 2 1 1 1 1 3 0 0 1 0 1 1 0 0 3 1 0 3 2 2 0 1 1 1 0 1 0 1 0 0 0 2 1 0
 0 0 1 1 0 2 3 3 1 -- 2 1 1 1 1 2 4 2 0 0 1 4 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1],
             mask = [False False False False False False False False False False False False
 False False False False False False False False False False False False
 False False False False False False False False False False False False
 False False False  True False False False False False False False False
 False False False False False False False False False False False False
 False False False False False False False False False False False False
 False False False False False False False False False False False  True
 False False False False False False False False False False False False
 False False False False False False False False False False False False
 False False False],
       fill_value = -999)
with pm.Model() as missing_data_model:
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=len(disasters_masked))
    early_mean = pm.Exponential('early_mean', lam=1.)
    late_mean = pm.Exponential('late_mean', lam=1.)
    idx = np.arange(len(disasters_masked))
    rate = pm.Deterministic('rate', switch(switchpoint >= idx, early_mean, late_mean))
    disasters = pm.Poisson('disasters', rate, observed=disasters_masked)
pm.model_to_graphviz(missing_data_model)

svg

By supplying a masked array to the likelihood part of our model, we ensure that the masked data points show up in our traces:

with missing_data_model:
    stepper=pm.Metropolis()
    trace_missing = pm.sample(40000, step=stepper)
Multiprocess sampling (2 chains in 2 jobs)
CompoundStep
>Metropolis: [disasters_missing]
>Metropolis: [late_mean]
>Metropolis: [early_mean]
>Metropolis: [switchpoint]
Sampling 2 chains: 100%|██████████| 81000/81000 [00:40<00:00, 2008.25draws/s]
The number of effective samples is smaller than 10% for some parameters.
tm2=trace_missing[4000::5]
pm.summary(tm2)
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
switchpoint 38.721806 2.460939 0.043931 34.000000 43.000000 3701.337711 1.000138
disasters_missing__0 2.100694 1.790212 0.039944 0.000000 5.000000 2415.221405 0.999964
disasters_missing__1 0.907778 0.945733 0.010209 0.000000 3.000000 6751.376254 1.000121
early_mean 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
late_mean 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__0 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__1 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__2 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__3 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__4 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__5 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__6 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__7 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__8 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__9 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__10 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__11 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__12 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__13 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__14 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__15 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__16 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__17 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__18 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__19 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__20 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__21 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__22 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__23 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
rate__24 3.086498 0.288385 0.003494 2.547688 3.681163 6722.815884 0.999999
... ... ... ... ... ... ... ...
rate__81 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__82 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__83 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__84 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__85 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__86 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__87 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__88 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__89 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__90 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__91 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__92 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__93 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__94 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__95 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__96 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__97 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__98 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__99 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__100 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__101 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__102 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__103 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__104 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__105 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__106 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__107 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__108 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__109 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466
rate__110 0.931478 0.118384 0.001440 0.713553 1.177016 7011.001490 1.000466

116 rows × 7 columns

missing_data_model.vars
[switchpoint, early_mean_log__, late_mean_log__, disasters_missing]
pm.traceplot(tm2);
//anaconda/envs/py3l/lib/python3.6/site-packages/matplotlib/axes/_base.py:3449: MatplotlibDeprecationWarning: 
The `ymin` argument was deprecated in Matplotlib 3.0 and will be removed in 3.2. Use `bottom` instead.
  alternative='`bottom`', obj_type='argument')

png

Convergence of our model

Going back to the original model…

Histograms every m samples

As a visual check, we plot histograms or kdeplots every 500 samples and check that they look identical.

import matplotlib.pyplot as plt

emtrace = t2['early_mean']

fig, axes = plt.subplots(2, 5, figsize=(14,6))
axes = axes.ravel()
for i in range(10):
    axes[i].hist(emtrace[500*i:500*(i+1)], normed=True, alpha=0.2)
    sns.kdeplot(emtrace[500*i:500*(i+1)], ax=axes[i])
plt.tight_layout()
//anaconda/envs/py3l/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6499: MatplotlibDeprecationWarning: 
The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
  alternative="'density'", removal="3.1")

png

Gewecke test

The gewecke test tests that the difference of means of chain-parts written as a Z-score oscilates between 1 and -1

\[\vert \mu_{\theta_1} - \mu_{\theta_2} \vert < 2 \sigma_{\theta_1 - \theta_2}\]
from pymc3 import geweke
    
z = geweke(t2, intervals=15)[0]
z
{'early_mean': array([[  0.00000000e+00,   5.61498762e-02],
        [  2.57000000e+02,   3.30181736e-02],
        [  5.14000000e+02,  -1.13386479e-02],
        [  7.71000000e+02,  -1.08683708e-02],
        [  1.02800000e+03,  -3.18609424e-02],
        [  1.28500000e+03,  -2.44007294e-02],
        [  1.54200000e+03,  -9.42940333e-03],
        [  1.79900000e+03,   1.38612211e-02],
        [  2.05600000e+03,   2.44459326e-02],
        [  2.31300000e+03,   1.76236156e-02],
        [  2.57000000e+03,  -1.83317207e-02],
        [  2.82700000e+03,  -2.08740078e-02],
        [  3.08400000e+03,  -3.78760002e-02],
        [  3.34100000e+03,  -2.33616055e-02],
        [  3.59800000e+03,  -8.93753177e-02]]),
 'early_mean_log__': array([[  0.00000000e+00,   5.40712421e-02],
        [  2.57000000e+02,   3.20225634e-02],
        [  5.14000000e+02,  -1.21207399e-02],
        [  7.71000000e+02,  -1.53444650e-02],
        [  1.02800000e+03,  -3.41697516e-02],
        [  1.28500000e+03,  -2.60208461e-02],
        [  1.54200000e+03,  -9.58032469e-03],
        [  1.79900000e+03,   1.20771272e-02],
        [  2.05600000e+03,   2.27472686e-02],
        [  2.31300000e+03,   1.62502583e-02],
        [  2.57000000e+03,  -1.83595794e-02],
        [  2.82700000e+03,  -2.06877678e-02],
        [  3.08400000e+03,  -3.68628168e-02],
        [  3.34100000e+03,  -1.96692332e-02],
        [  3.59800000e+03,  -9.00174724e-02]]),
 'late_mean': array([[  0.00000000e+00,   4.08287159e-02],
        [  2.57000000e+02,  -2.92363937e-02],
        [  5.14000000e+02,  -5.38270045e-02],
        [  7.71000000e+02,   5.63678903e-03],
        [  1.02800000e+03,   1.34028136e-02],
        [  1.28500000e+03,   6.38604399e-02],
        [  1.54200000e+03,   4.89896588e-02],
        [  1.79900000e+03,   6.99272457e-02],
        [  2.05600000e+03,   3.55314031e-02],
        [  2.31300000e+03,   9.88599384e-03],
        [  2.57000000e+03,   1.72258915e-02],
        [  2.82700000e+03,   4.12609613e-02],
        [  3.08400000e+03,   2.16946625e-02],
        [  3.34100000e+03,   3.15327875e-02],
        [  3.59800000e+03,   1.50735157e-02]]),
 'late_mean_log__': array([[  0.00000000e+00,   4.19113445e-02],
        [  2.57000000e+02,  -2.82149481e-02],
        [  5.14000000e+02,  -5.57252602e-02],
        [  7.71000000e+02,   4.42927658e-04],
        [  1.02800000e+03,   1.01563960e-02],
        [  1.28500000e+03,   6.69668358e-02],
        [  1.54200000e+03,   5.47312239e-02],
        [  1.79900000e+03,   7.11500876e-02],
        [  2.05600000e+03,   3.36857501e-02],
        [  2.31300000e+03,   7.20640643e-03],
        [  2.57000000e+03,   1.52483860e-02],
        [  2.82700000e+03,   3.62744473e-02],
        [  3.08400000e+03,   2.07380857e-02],
        [  3.34100000e+03,   2.89119928e-02],
        [  3.59800000e+03,   1.12619091e-02]]),
 'switchpoint': array([[  0.00000000e+00,  -4.39653271e-02],
        [  2.57000000e+02,  -2.69927320e-02],
        [  5.14000000e+02,   2.04644938e-02],
        [  7.71000000e+02,  -1.34952058e-02],
        [  1.02800000e+03,   9.72819474e-05],
        [  1.28500000e+03,  -2.60017648e-02],
        [  1.54200000e+03,  -9.28102162e-02],
        [  1.79900000e+03,  -9.90854028e-02],
        [  2.05600000e+03,  -1.61978444e-02],
        [  2.31300000e+03,  -1.96622006e-03],
        [  2.57000000e+03,  -7.48155186e-02],
        [  2.82700000e+03,  -4.25450296e-02],
        [  3.08400000e+03,  -2.14223408e-04],
        [  3.34100000e+03,  -2.63551341e-02],
        [  3.59800000e+03,   5.57747320e-03]])}

Here is a plot for early_mean. You sould really be plotting all of these…

z['early_mean'].T
array([[  0.00000000e+00,   2.57000000e+02,   5.14000000e+02,
          7.71000000e+02,   1.02800000e+03,   1.28500000e+03,
          1.54200000e+03,   1.79900000e+03,   2.05600000e+03,
          2.31300000e+03,   2.57000000e+03,   2.82700000e+03,
          3.08400000e+03,   3.34100000e+03,   3.59800000e+03],
       [  5.61498762e-02,   3.30181736e-02,  -1.13386479e-02,
         -1.08683708e-02,  -3.18609424e-02,  -2.44007294e-02,
         -9.42940333e-03,   1.38612211e-02,   2.44459326e-02,
          1.76236156e-02,  -1.83317207e-02,  -2.08740078e-02,
         -3.78760002e-02,  -2.33616055e-02,  -8.93753177e-02]])
plt.scatter(*z['early_mean'].T)
plt.axhline(-1, 0, 1, linestyle='dotted')
plt.axhline(1, 0, 1, linestyle='dotted')
<matplotlib.lines.Line2D at 0x122770438>

png

Gelman-Rubin

For this test, which calculates

\[\hat{R} = \sqrt{\frac{\hat{Var}(\theta)}{w}}\]

we need more than 1-chain. This is done through njobs=4 (the defaukt is 2 and reported in pm.summary). See the trace below:

with coaldis1:
    stepper=pm.Metropolis()
    tr2 = pm.sample(40000, step=stepper, njobs=4)
Multiprocess sampling (4 chains in 4 jobs)
CompoundStep
>Metropolis: [switchpoint]
>Metropolis: [late_mean]
>Metropolis: [early_mean]
Sampling 4 chains: 100%|██████████| 162000/162000 [00:57<00:00, 2837.84draws/s]
The number of effective samples is smaller than 10% for some parameters.
tr2
<MultiTrace: 4 chains, 40000 iterations, 5 variables>
tr2_cut = tr2[4000::5]
from pymc3 import gelman_rubin

gelman_rubin(tr2_cut)
{'early_mean': 1.0001442735491479,
 'late_mean': 1.0000078726931823,
 'switchpoint': 1.0002808010976048}

For the best results, each chain should be initialized to highly dispersed starting values for each stochastic node.

A foresplot will show you the credible-interval consistency of our chains..

from pymc3 import forestplot

forestplot(tr2_cut)
GridSpec(1, 2, width_ratios=[3, 1])

png

Autocorrelation

This can be probed by plotting the correlation plot and effective sample size

from pymc3 import effective_n

effective_n(tr2_cut)
{'early_mean': 13037.380191598249,
 'late_mean': 15375.337202610448,
 'switchpoint': 11955.470326961806}
pm.autocorrplot(tr2_cut);

png

pm.autocorrplot(tr2);

png

Posterior predictive checks

Finally let us peek into posterior predictive checks: something we’ll talk more about soon.

with coaldis1:
    sim = pm.sample_ppc(t2, samples=200)
100%|██████████| 200/200 [00:02<00:00, 99.38it/s]
sim['disasters'].shape
(200, 111)

This gives us 200 samples at each of the 111 diasters we have data on.

We plot the first 4 posteriors against actual data for consistency…

fig, axes = plt.subplots(1, 4, figsize=(12, 6))
print(axes.shape)
for obs, s, ax in zip(disasters_data, sim['disasters'].T, axes):
    print(obs)
    ax.hist(s, bins=10)
    ax.plot(obs+0.5, 1, 'ro')
(4,)
4
5
4
0

png