{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Mixtures and MCMC\n", "\n", "##### Keywords: supervised learning, semi-supervised learning, unsupervised learning, mixture model, gaussian mixture model, pymc3, label-switching, identifiability, normal distribution, pymc3 potentials\n", "\n", "We now do a study of learning mixture models with MCMC. We have already done this in the case of the Zero-Inflated Poisson Model, and will stick to Gaussian Mixture models for now." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "//anaconda/envs/py3l/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n" ] } ], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import scipy as sp\n", "import matplotlib as mpl\n", "import matplotlib.cm as cm\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "pd.set_option('display.width', 500)\n", "pd.set_option('display.max_columns', 100)\n", "pd.set_option('display.notebook_repr_html', True)\n", "import seaborn as sns\n", "sns.set_style(\"whitegrid\")\n", "sns.set_context(\"poster\")\n", "import pymc3 as pm\n", "import theano.tensor as tt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mixture of 2 Gaussians, the old faithful data\n", "\n", "We start by considering waiting times from the Old-Faithful Geyser at Yellowstone National Park." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | eruptions | \n", "waiting | \n", "
---|---|---|
0 | \n", "3.600 | \n", "79 | \n", "
1 | \n", "1.800 | \n", "54 | \n", "
2 | \n", "3.333 | \n", "74 | \n", "
3 | \n", "2.283 | \n", "62 | \n", "
4 | \n", "4.533 | \n", "85 | \n", "
\n", " | mean | \n", "sd | \n", "mc_error | \n", "hpd_2.5 | \n", "hpd_97.5 | \n", "n_eff | \n", "Rhat | \n", "
---|---|---|---|---|---|---|---|
assignment__0 | \n", "0.999687 | \n", "0.017675 | \n", "0.000311 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__1 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__2 | \n", "0.993125 | \n", "0.082630 | \n", "0.001504 | \n", "1.000000 | \n", "1.000000 | \n", "3248.753445 | \n", "0.999745 | \n", "
assignment__3 | \n", "0.050937 | \n", "0.219870 | \n", "0.004231 | \n", "0.000000 | \n", "1.000000 | \n", "3173.388070 | \n", "1.000029 | \n", "
assignment__4 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__5 | \n", "0.000313 | \n", "0.017675 | \n", "0.000311 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__6 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__7 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__8 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__9 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__10 | \n", "0.000625 | \n", "0.024992 | \n", "0.000437 | \n", "0.000000 | \n", "0.000000 | \n", "3208.032629 | \n", "0.999687 | \n", "
assignment__11 | \n", "0.999687 | \n", "0.017675 | \n", "0.000311 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__12 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__13 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__14 | \n", "0.999687 | \n", "0.017675 | \n", "0.000311 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__15 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__16 | \n", "0.046875 | \n", "0.211371 | \n", "0.003711 | \n", "0.000000 | \n", "0.000000 | \n", "3205.553814 | \n", "0.999696 | \n", "
assignment__17 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__18 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__19 | \n", "0.999375 | \n", "0.024992 | \n", "0.000437 | \n", "1.000000 | \n", "1.000000 | \n", "3208.032629 | \n", "0.999687 | \n", "
assignment__20 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__21 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__22 | \n", "0.999062 | \n", "0.030604 | \n", "0.000533 | \n", "1.000000 | \n", "1.000000 | \n", "3209.379383 | \n", "0.999792 | \n", "
assignment__23 | \n", "0.817500 | \n", "0.386256 | \n", "0.006151 | \n", "0.000000 | \n", "1.000000 | \n", "3120.023664 | \n", "0.999729 | \n", "
assignment__24 | \n", "0.993125 | \n", "0.082630 | \n", "0.001629 | \n", "1.000000 | \n", "1.000000 | \n", "3235.543269 | \n", "1.001749 | \n", "
assignment__25 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__26 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__27 | \n", "0.997188 | \n", "0.052958 | \n", "0.001177 | \n", "1.000000 | \n", "1.000000 | \n", "3222.014229 | \n", "0.999722 | \n", "
assignment__28 | \n", "0.998437 | \n", "0.039498 | \n", "0.000681 | \n", "1.000000 | \n", "1.000000 | \n", "3213.694327 | \n", "0.999750 | \n", "
assignment__29 | \n", "0.998750 | \n", "0.035333 | \n", "0.000612 | \n", "1.000000 | \n", "1.000000 | \n", "3212.072926 | \n", "0.999687 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
assignment__247 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__248 | \n", "0.576562 | \n", "0.494103 | \n", "0.008319 | \n", "0.000000 | \n", "1.000000 | \n", "2947.001300 | \n", "1.000571 | \n", "
assignment__249 | \n", "0.995938 | \n", "0.063608 | \n", "0.001140 | \n", "1.000000 | \n", "1.000000 | \n", "2794.058393 | \n", "0.999712 | \n", "
assignment__250 | \n", "0.000625 | \n", "0.024992 | \n", "0.000437 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "1.000313 | \n", "
assignment__251 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__252 | \n", "0.983750 | \n", "0.126436 | \n", "0.002048 | \n", "1.000000 | \n", "1.000000 | \n", "3312.296435 | \n", "0.999907 | \n", "
assignment__253 | \n", "0.983125 | \n", "0.128803 | \n", "0.001897 | \n", "1.000000 | \n", "1.000000 | \n", "3192.025887 | \n", "0.999899 | \n", "
assignment__254 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__255 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__256 | \n", "0.949375 | \n", "0.219231 | \n", "0.004141 | \n", "0.000000 | \n", "1.000000 | \n", "2517.301618 | \n", "1.000086 | \n", "
assignment__257 | \n", "0.999687 | \n", "0.017675 | \n", "0.000311 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__258 | \n", "0.000625 | \n", "0.024992 | \n", "0.000437 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "1.000313 | \n", "
assignment__259 | \n", "0.999687 | \n", "0.017675 | \n", "0.000311 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__260 | \n", "0.999687 | \n", "0.017675 | \n", "0.000311 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "1.000000 | \n", "
assignment__261 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__262 | \n", "0.003438 | \n", "0.058529 | \n", "0.000978 | \n", "0.000000 | \n", "0.000000 | \n", "3224.662207 | \n", "0.999944 | \n", "
assignment__263 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__264 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__265 | \n", "0.013750 | \n", "0.116451 | \n", "0.002088 | \n", "0.000000 | \n", "0.000000 | \n", "3296.006530 | \n", "0.999716 | \n", "
assignment__266 | \n", "0.995938 | \n", "0.063608 | \n", "0.001140 | \n", "1.000000 | \n", "1.000000 | \n", "2823.618545 | \n", "1.000870 | \n", "
assignment__267 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__268 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__269 | \n", "1.000000 | \n", "0.000000 | \n", "0.000000 | \n", "1.000000 | \n", "1.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__270 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "0.000000 | \n", "NaN | \n", "NaN | \n", "
assignment__271 | \n", "0.993125 | \n", "0.082630 | \n", "0.001295 | \n", "1.000000 | \n", "1.000000 | \n", "3247.614839 | \n", "0.999916 | \n", "
centers__0 | \n", "54.627527 | \n", "0.733327 | \n", "0.011941 | \n", "53.263593 | \n", "56.069912 | \n", "2857.383302 | \n", "1.000063 | \n", "
centers__1 | \n", "80.087834 | \n", "0.523151 | \n", "0.008877 | \n", "79.104464 | \n", "81.134251 | \n", "3013.404106 | \n", "0.999852 | \n", "
p | \n", "0.361858 | \n", "0.030777 | \n", "0.000567 | \n", "0.302382 | \n", "0.419931 | \n", "2753.669629 | \n", "1.000464 | \n", "
sds__0 | \n", "6.018165 | \n", "0.585472 | \n", "0.010211 | \n", "4.961674 | \n", "7.231991 | \n", "2942.626870 | \n", "0.999759 | \n", "
sds__1 | \n", "5.947338 | \n", "0.416616 | \n", "0.008702 | \n", "5.151874 | \n", "6.773165 | \n", "2566.297885 | \n", "0.999898 | \n", "
277 rows × 7 columns
\n", "\n", " | mean | \n", "sd | \n", "mc_error | \n", "hpd_2.5 | \n", "hpd_97.5 | \n", "n_eff | \n", "Rhat | \n", "
---|---|---|---|---|---|---|---|
category__0 | \n", "1.406071 | \n", "0.575480 | \n", "0.014954 | \n", "1.000000 | \n", "2.000000 | \n", "1362.583316 | \n", "1.000115 | \n", "
category__1 | \n", "0.228571 | \n", "0.421610 | \n", "0.010938 | \n", "0.000000 | \n", "1.000000 | \n", "1306.422985 | \n", "1.000472 | \n", "
category__2 | \n", "0.395357 | \n", "0.496897 | \n", "0.011826 | \n", "0.000000 | \n", "1.000000 | \n", "1674.615993 | \n", "1.000276 | \n", "
category__3 | \n", "0.108929 | \n", "0.311550 | \n", "0.008695 | \n", "0.000000 | \n", "1.000000 | \n", "1307.190266 | \n", "1.001074 | \n", "
category__4 | \n", "0.824643 | \n", "0.552559 | \n", "0.011552 | \n", "0.000000 | \n", "2.000000 | \n", "2328.351050 | \n", "0.999864 | \n", "
category__5 | \n", "0.280714 | \n", "0.452516 | \n", "0.011192 | \n", "0.000000 | \n", "1.000000 | \n", "1662.033357 | \n", "1.000363 | \n", "
category__6 | \n", "1.948929 | \n", "0.221760 | \n", "0.004981 | \n", "1.000000 | \n", "2.000000 | \n", "1702.198664 | \n", "1.002138 | \n", "
category__7 | \n", "1.712143 | \n", "0.473583 | \n", "0.012564 | \n", "1.000000 | \n", "2.000000 | \n", "1256.089935 | \n", "0.999754 | \n", "
category__8 | \n", "0.900357 | \n", "0.569837 | \n", "0.011499 | \n", "0.000000 | \n", "2.000000 | \n", "2245.021084 | \n", "0.999675 | \n", "
category__9 | \n", "1.739286 | \n", "0.454218 | \n", "0.012043 | \n", "1.000000 | \n", "2.000000 | \n", "1421.562668 | \n", "1.000357 | \n", "
category__10 | \n", "0.432500 | \n", "0.506121 | \n", "0.013448 | \n", "0.000000 | \n", "1.000000 | \n", "1749.523067 | \n", "0.999755 | \n", "
category__11 | \n", "1.758214 | \n", "0.445337 | \n", "0.011746 | \n", "1.000000 | \n", "2.000000 | \n", "1291.113963 | \n", "1.000946 | \n", "
category__12 | \n", "1.916071 | \n", "0.282386 | \n", "0.006534 | \n", "1.000000 | \n", "2.000000 | \n", "1765.304573 | \n", "1.000003 | \n", "
category__13 | \n", "1.866429 | \n", "0.342284 | \n", "0.009551 | \n", "1.000000 | \n", "2.000000 | \n", "1477.039629 | \n", "0.999995 | \n", "
category__14 | \n", "0.225000 | \n", "0.419289 | \n", "0.010990 | \n", "0.000000 | \n", "1.000000 | \n", "1472.910821 | \n", "1.001048 | \n", "
category__15 | \n", "0.459286 | \n", "0.513864 | \n", "0.011694 | \n", "0.000000 | \n", "1.000000 | \n", "1619.209679 | \n", "1.000851 | \n", "
category__16 | \n", "0.649643 | \n", "0.528238 | \n", "0.011004 | \n", "0.000000 | \n", "1.000000 | \n", "2333.805817 | \n", "0.999647 | \n", "
category__17 | \n", "0.440000 | \n", "0.511273 | \n", "0.012340 | \n", "0.000000 | \n", "1.000000 | \n", "1803.682268 | \n", "1.000142 | \n", "
category__18 | \n", "1.989286 | \n", "0.102954 | \n", "0.002396 | \n", "2.000000 | \n", "2.000000 | \n", "2055.892030 | \n", "0.999691 | \n", "
category__19 | \n", "1.957143 | \n", "0.202535 | \n", "0.004574 | \n", "2.000000 | \n", "2.000000 | \n", "1996.770513 | \n", "1.001435 | \n", "
category__20 | \n", "0.445714 | \n", "0.510514 | \n", "0.013029 | \n", "0.000000 | \n", "1.000000 | \n", "1827.687813 | \n", "0.999651 | \n", "
category__21 | \n", "1.989643 | \n", "0.101242 | \n", "0.002039 | \n", "2.000000 | \n", "2.000000 | \n", "2505.025728 | \n", "0.999954 | \n", "
category__22 | \n", "1.930000 | \n", "0.255147 | \n", "0.006387 | \n", "1.000000 | \n", "2.000000 | \n", "1414.514214 | \n", "1.000427 | \n", "
category__23 | \n", "1.332143 | \n", "0.587704 | \n", "0.014147 | \n", "0.000000 | \n", "2.000000 | \n", "1797.023673 | \n", "1.001351 | \n", "
category__24 | \n", "1.733571 | \n", "0.457963 | \n", "0.012479 | \n", "1.000000 | \n", "2.000000 | \n", "1184.444494 | \n", "1.000431 | \n", "
category__25 | \n", "1.515714 | \n", "0.556555 | \n", "0.015364 | \n", "1.000000 | \n", "2.000000 | \n", "1331.826974 | \n", "0.999807 | \n", "
category__26 | \n", "0.425000 | \n", "0.500089 | \n", "0.012622 | \n", "0.000000 | \n", "1.000000 | \n", "1455.116136 | \n", "0.999694 | \n", "
category__27 | \n", "1.979643 | \n", "0.141219 | \n", "0.002913 | \n", "2.000000 | \n", "2.000000 | \n", "2378.339776 | \n", "1.003031 | \n", "
category__28 | \n", "1.722143 | \n", "0.468214 | \n", "0.012763 | \n", "1.000000 | \n", "2.000000 | \n", "1469.880006 | \n", "1.000669 | \n", "
category__29 | \n", "0.873214 | \n", "0.554202 | \n", "0.011719 | \n", "0.000000 | \n", "2.000000 | \n", "2572.986079 | \n", "1.000211 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
category__76 | \n", "0.473929 | \n", "0.516892 | \n", "0.012308 | \n", "0.000000 | \n", "1.000000 | \n", "1568.551705 | \n", "1.000044 | \n", "
category__77 | \n", "1.940714 | \n", "0.237666 | \n", "0.005468 | \n", "1.000000 | \n", "2.000000 | \n", "2057.523309 | \n", "1.000546 | \n", "
category__78 | \n", "1.552857 | \n", "0.545821 | \n", "0.014423 | \n", "1.000000 | \n", "2.000000 | \n", "1278.184527 | \n", "1.001185 | \n", "
category__79 | \n", "1.197143 | \n", "0.603317 | \n", "0.012732 | \n", "0.000000 | \n", "2.000000 | \n", "2419.356924 | \n", "0.999812 | \n", "
category__80 | \n", "0.119643 | \n", "0.325642 | \n", "0.008502 | \n", "0.000000 | \n", "1.000000 | \n", "1457.209338 | \n", "0.999644 | \n", "
category__81 | \n", "0.671429 | \n", "0.535762 | \n", "0.011043 | \n", "0.000000 | \n", "1.000000 | \n", "2416.678137 | \n", "0.999991 | \n", "
category__82 | \n", "1.471786 | \n", "0.560539 | \n", "0.014711 | \n", "1.000000 | \n", "2.000000 | \n", "1408.654254 | \n", "0.999643 | \n", "
category__83 | \n", "0.687857 | \n", "0.540894 | \n", "0.011061 | \n", "0.000000 | \n", "1.000000 | \n", "2184.065312 | \n", "1.000089 | \n", "
category__84 | \n", "1.832500 | \n", "0.379117 | \n", "0.009391 | \n", "1.000000 | \n", "2.000000 | \n", "1442.318862 | \n", "0.999651 | \n", "
category__85 | \n", "0.238929 | \n", "0.428101 | \n", "0.010072 | \n", "0.000000 | \n", "1.000000 | \n", "1580.222999 | \n", "0.999649 | \n", "
category__86 | \n", "1.001786 | \n", "0.574764 | \n", "0.011643 | \n", "0.000000 | \n", "2.000000 | \n", "2431.781980 | \n", "0.999884 | \n", "
category__87 | \n", "0.714286 | \n", "0.546884 | \n", "0.011661 | \n", "0.000000 | \n", "1.000000 | \n", "2298.065679 | \n", "0.999726 | \n", "
category__88 | \n", "1.627143 | \n", "0.519869 | \n", "0.014501 | \n", "1.000000 | \n", "2.000000 | \n", "1153.871436 | \n", "0.999673 | \n", "
category__89 | \n", "1.979286 | \n", "0.142426 | \n", "0.002728 | \n", "2.000000 | \n", "2.000000 | \n", "2325.559161 | \n", "0.999668 | \n", "
category__90 | \n", "1.987143 | \n", "0.112658 | \n", "0.002501 | \n", "2.000000 | \n", "2.000000 | \n", "1955.167689 | \n", "1.000005 | \n", "
category__91 | \n", "1.411429 | \n", "0.573845 | \n", "0.012387 | \n", "1.000000 | \n", "2.000000 | \n", "2121.534066 | \n", "0.999742 | \n", "
category__92 | \n", "0.287857 | \n", "0.454339 | \n", "0.011087 | \n", "0.000000 | \n", "1.000000 | \n", "1656.472820 | \n", "1.000951 | \n", "
category__93 | \n", "0.120714 | \n", "0.325795 | \n", "0.009032 | \n", "0.000000 | \n", "1.000000 | \n", "1414.023539 | \n", "0.999648 | \n", "
category__94 | \n", "0.817857 | \n", "0.560327 | \n", "0.011872 | \n", "0.000000 | \n", "2.000000 | \n", "1951.110342 | \n", "0.999649 | \n", "
category__95 | \n", "1.003571 | \n", "0.596407 | \n", "0.012872 | \n", "0.000000 | \n", "2.000000 | \n", "2002.102565 | \n", "0.999679 | \n", "
category__96 | \n", "0.076786 | \n", "0.266251 | \n", "0.007683 | \n", "0.000000 | \n", "1.000000 | \n", "1365.135665 | \n", "0.999645 | \n", "
category__97 | \n", "1.140000 | \n", "0.584661 | \n", "0.010782 | \n", "0.000000 | \n", "2.000000 | \n", "2331.457873 | \n", "0.999697 | \n", "
category__98 | \n", "1.993571 | \n", "0.079920 | \n", "0.001462 | \n", "2.000000 | \n", "2.000000 | \n", "2601.475216 | \n", "1.000921 | \n", "
category__99 | \n", "0.199643 | \n", "0.400624 | \n", "0.010216 | \n", "0.000000 | \n", "1.000000 | \n", "1420.458431 | \n", "1.000063 | \n", "
p__0 | \n", "0.360226 | \n", "0.081588 | \n", "0.003317 | \n", "0.204306 | \n", "0.519089 | \n", "519.487415 | \n", "1.002060 | \n", "
p__1 | \n", "0.325225 | \n", "0.071761 | \n", "0.001919 | \n", "0.172866 | \n", "0.459570 | \n", "1294.128430 | \n", "0.999978 | \n", "
p__2 | \n", "0.314550 | \n", "0.065550 | \n", "0.002548 | \n", "0.189302 | \n", "0.444908 | \n", "587.062612 | \n", "1.001335 | \n", "
means__0 | \n", "-1.886959 | \n", "0.263363 | \n", "0.007660 | \n", "-2.388613 | \n", "-1.365366 | \n", "1295.486095 | \n", "1.002200 | \n", "
means__1 | \n", "-0.407361 | \n", "0.565056 | \n", "0.029250 | \n", "-1.451171 | \n", "0.683029 | \n", "286.606094 | \n", "1.002899 | \n", "
means__2 | \n", "1.948775 | \n", "0.303411 | \n", "0.009837 | \n", "1.418676 | \n", "2.599857 | \n", "791.034984 | \n", "1.001906 | \n", "
106 rows × 7 columns
\n", "