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What was this course about?

Density Estimation. (Also called unsupervised or representation
learning)

Generative Models in statistics and machine learning..a
principled way of modeling (both supervised and unsupervised)

Being Bayesian: a self-consistent process to carry out this
modeling

Sampling and stochastic optimization: the technology needed
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Along the way we

e |learn how to regularize models
e deal with data computationally large/small and statistically small/large

e |learn how to optimize objective functions such as loss functions using
Stochastic Gradient Descent

e Perform sampling and MCMC to solve a variety of problems,
especially Bayes

e Learn how to use parametric, and non-parametric methods
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Concepts running through:

Hidden Variables, marginalized
Testing, testing, testing
Differentiation vs Integration
Frequentist vs Bayesian
Generative Models
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SMALL WORLD vs BIG
WORLD

Small world:

P(D | 6) x P(6)

P(0| D) = P(D)

Big World:

P(D | M) x P(M)
P(D)

P(M | D) =




Dont Overfit

Complexity “d" ——p
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KL-Divergence: compare model to nature

Dxkr1.(p,q) = Ep|log(p) — log(q)] = Ey[log(p/q)]

= pitog(2) or [ dPlog(?)
; q

q

Dgkr(p,p) =0

KL divergence measures distance/dissimilarity of the two distributions p(x)
and q(x).

e used for VI, EM, a probabilistic loss function

@AM 207



Frequentist Statistics

"data is a sample from an existing population”
e data is stochastic, variable; parameters fixed
e fit a parameter

e samples (or bootstrap) induce a sampling distribution on any
estimator

e example of a very useful estimator: MLE
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Information Entropy and MAXENT

H(p) = ~Eyllog(p)] = - [ p(@)log(p(z))dz OR - > piog(p)

 what would be the least surprising distribution, the one with the
least additional assumptions (most conservative), the one that
can happen in the most ways consistent with constraints

 most common distributions used as likelihoods (and priors) are in
the exponential family, MAXENT subject to different constraints.
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SAMPLE vs POPULATION

Want: o (h) = Ey[(h(z) ~ £(2))*) = [ dap(e)(h(z) - £(2))’

LLIN:
Rou(h) = lim — 3 (h(w:) — f(z:))2 = lim — 3 (h(z;) — %)?

z;i~p(z) zi~p()

D representative (D ~ p(xz)) = Rp(h) = Z (h(zi) — yi)®

x; €D
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Statement of the Learning
Problem

The sample must be representative of the
population!

A : Rp(g) smallestonH
B : Ry (g) ~ RD(g)

A: Empirical risk estimates in-sample risk.
B: Thus the out of sample risk is also small.
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Stochastic Gradient Descent

0:=0— aV,J;(6)

ONE POINT AT ATIME

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:

params _grad = evaluate gradient(loss function, example, params)
params = params - learning rate * params_grad

Mini-Batch: do some at a time

@AM 207
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Softmax Formulation of Logistic Regression

Input 2=x.w
P L= Xi Wi 23 = LM, (12, 22)
1 g . .
T 1§~ “ W] 2t =) (Liz] +122))
ro; —* Linear LSM NLL » Cost
. 3 _ T (2 .2
. ../’/ z%:xi'WQ zz—LSMg’(z.l,z?_)
T di o
Z Wy
Zl = X;
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Write as:
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Backprop: Reverse Mode Differentiation
Cost = f2° (£2 (£2 (£* (x))))

aftess o> of? of!

VxUost = =53 57 ol ox
dfloss ofS  Of?  of!
VXCOSt - ((( 8f3 sz ) F) E)
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Law of Large numbers, LOTUS, MC

Let 1, 2o, ..., z, be a sequence of IID values from random variable X, which has finite mean u.
Let:

1 n
Sp = — E x;, then §;, — pasn — oo.
n 4
=1

e Expectations become sample averages. Convergence for large N.

Byl = [ 9(@)aF = [ g(e) (e)do = lim & 3" gla)

n—oo

e allows for monte-carlo
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NEED SAMPLES: GENERATE
THEM!

—
o
1

e |Inverse method, Rejection (on steroids) M g(x)

e Stratification to reduce variance
f(x)

e |Importance (for expectations)
e« MCMC, MH, HMC, Slice, ADVI, etc

* integrals (marginalize) by ignoring
dimensions in histogram

Y Axis
C = N WA OO N @® ©
. : P : P P
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MCMC Intuition: proposal approaches typical set

oA

Instead of sampling p we sample q, yielding a new state, and a new proposal distribution from which to sample.
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Critical: explore the typical set: stationarity

Set

S

Typical dq

n(q) dq

lq B qMode|
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Metropolis and MH

Proposal distributions

Proposal distributions
with smaller variance...

with larger variance...

Disadvantage: robot
often proposes a step

that would take it off
a cliff, and refuses to

move § i

Advantage: robot can
potentially cover a lot of
ground quickly

steps

@AM 207

Advantage: robot seldom
refuses to take proposed

Disadvantage: robot takes
smaller steps, more time
required to explore the
same area
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The idea of Gibbs

f(il?t) — /h(xtaxt—l)f(xt—l)dxt—L d
Stationary distribution.

h(z,z') = /dyf(m|y)f(y|:c') Sample

alternately to get transitions.

Can sample & marginal and z|y so can
sample the joint z, y.
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Data Augmentation

The difference from Gibbs Sampling: the other variable, say y, is to
be treated as latent.

The game is to construct a joint p(z, y) such that we can sample
from p(z|y) and p(y|x), and then find the marginal

p(z) = / dyp(z,y).

@AM 207
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HMC: need glide

DATA AUGMENTATION: with an

additional momentum gives energy
y

Hamiltonian H(p, q) = ;m -V(q)

Hamiltonian flow: reversible, time-
invariant, volume-preserving
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Thrusters fire away

p(p,q) = e HPD = e~ KP2) VD = p(p|q)p(q)

H(p, q) = —log(p(p,q)) = —logp(p|q) — logp(q)

Choice of a kinetic energy term is choice
of a conditional probability distribution
over the "augmented" momentum such
that:

/ dpp(p, q) = / dpp(p|q)p(q) = p(q) / p(plq)dp = p(q)

@AM 207
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Tuning:

 The ideal kinetic energy interacts with

target, in practice we often use
Kp)=pM'p

e Set inverse mass matrix to the covariance of
the target distribution: maximally decorrelate
the target. Do in warmup phase.

e use symplectic integration

e need to determine L and e.

e generally static not good, under samples tails
(high-energy microcanonicals). Estimate
dynamically: NUTS (pymc3 and Stan)

&AM 207
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Model convergence: be
paranoid

e traces white noisy 16
14

1.2

e diagnose autocorrelation, check parameter correlations 10

0.6
0.4

pm.trace_to_dataframe(trace).corr() 02

. . . 1.6

e visually inspect histogram every m samples 14
1.2

1.0

e traceplots from different starting points, different 08

chains 0.4
0.2

0.0
e formal tests: Gewecke, Gelman-Rubin, Effective

Sample Size, accept rate

e HMC/NUTS: check divergences, check BFMI
(conditional to marginal energy ratio)
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df=pm.trace_to_dataframe(traceni)
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Sample value

14

switchpoint

0 1000 2000 3000 4000 5000 6000 7000 8000

early_mean

0 1000 2000 3000 4000 5000 6000 7000 8000

late_mean

0 1000 2000 3000 4000 5000 6000 7000 8000

df.corr()

sigma mu alphat alpha2
sigma | 1.000000 |-0.000115(-0.003153|0.003152
mu -0.000115 | 1.000000 |0.002844 |0.008293
alphat | -0.003153 | 0.002844 |1.000000 |-0.999938
alpha2 |0.003152 |0.008283 |-0.9998938 | 1.000000
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WHEN BAYES


https://twitter.com/jim_savage_/status/983371427226308609

Jake Mortenson @m0Ort - 19h v
That was part of my point, the other part being (perhaps out of my depth): with

2 Jim Savage y
@jim_savage_
. large data the benefits from incorporating pricrs may not be large (fixed effects
A test for whether a prOblem requires may be sufficient, depending on parameters of interest), and also computation

Bayesian methods: might be time-expensive. Sound right?
1. Is there information that is not in your data O 1 N > =
about population-level unknowns?

2. Do you need coherent uncertainty?

3. Are you combining complex models and

Jim Savage @jim_savage_ - 19h v
See rule 1 though: if there is informaticn your enormous data doesn't contain
about the unknown of interest (in the pcpulation--which for most purposes is a

want uncertainty to percolate th rough? future population) then there might still be value in having priors. Turkey before
thanksgiving story.
Yes to any? Bayes it. ® " M 1 S

11:49 AM - 9 Apr 2018

11 Retweets 90 Likes @W‘QOG@‘.

Q 3 1 11 ¥ % &

. Tweet your reply

4 Jake Mortenson @jmOrt - 20h v
| Replying to .

Have been locking for an excuse to dc Bayesian stuff in a tax policy research O + >
setting. But isn’t there also 4, do you have some sparsely populated (and : - v/ 4 —
interesting) bins? The answer tc 1 and 2 are virtually always yes, but have

Noah Motion @statmodcitizen - 22h v
Replying to

My intuition is that the answer to (2) is always "yes", but | may be
misunderstanding what you mean by the question...

O 1 [ \/ &

Jim Savage @jim_savage_ - 22h v
Strictly yes, if computation and analyst time has ne cost. Business maximize
profit, not correctness.

avoided so far because our data are typically yuge. Frank Harrell @f2harrell - 18h v
O 1 0 v, & e Replying to
la Jim Savage @jim_savage._ - 20h » Nice. I'd simply say "Does your problem require statistical inference?". If yes,
“ | couldn't add 4) You want to generalize to new populations (post-strat) & so Bayes it. Among other things this solves is that inference is exact. Most
want to estimate sub-group effects, but your sample has small N in those sub- frequentist analyses are approximations, other than the ordinary linear model
@ AI\/Pﬂ?@f?re's a lot of value in hierarchical priors. and a few others. 39
Are we saying the same thing? Q () ' 1 cz

) 4 9 a8 2 £A



Latent Variables

e dont think of bayes/frequentist, think of observed z /Latent z

e anything unobserved is latent (this is the posterior predictive
point of view, x as 0), thus standard bayesian viewpoint: nuisance
parameters are latent

e |atent factors in matrix factorization, mixtures,
recommendations...cluster zs

@AM 207
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Generative model

p(x, z) = p(x|z)p(z

* The likelihood posits a data generating process, where the data x are assumed drawn
from the likelihood conditioned on a particular hidden pattern described by z.

e The prior p(z) is a probability distribution that describes the latent variables present in
the data. The prior posits a generating process of the hidden structure.

@AM 207
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Bayesian

e sample is the data, and is fixed

e parameter is stochastic, has prior and posterior distribution

p(y|0) p(0)

. can summarize via MAP
p(y)

e posterior: p(Qly) =

likelithood X prior

* just bayes rule: posterior = .
evidence

@AM 207
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» prior-predictive = evidence: p(y) = E,¢ L] = /d@p(y\@)p(@) 3
normalization, useful for workflow and EB

e What if 8 is multidimensional? Marginal posterior:

p(61|D) = / d6_1p(6|D).

e posterior predictive: the distribution of a future data point y*:

p(y*|D = {y}) = By [0(1]6)] = / d6p(y*19)p(6] {w})

@AM 207

36



Marginalization

Marginal posterior: p(6,|D) = /dﬂ_lp(9|D).

samps[20000: :,:].shape #(10001, 2)

sns.jointplot(
pd.Series(samps[20000::,0], name="$\mu$"),
pd.Series(samps[20000::,1], name="$\sigma$"),
alpha=0.02)
.plot_joint(
sns.kdeplot,
zorder=0, n_levels=6, alpha=1)

Marginals are just 1D histograms

plt.hist(samps[20000::,0])

&AM 207

30

25

© 20

1.5

1.0

16

17

pearsonr =-0.0047; p = 0.64
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Bayesian Updating
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N=0
== posterior with flat prior
= nosterior with biased prior

Data Overwhelms priors

02 04 06 o8 1.0

N=4
== posterior with flat prior
= nosterior with biased prior

Define kK = o2 /72

O aN W o N ® O a2 NWdH O~ ®

00 02 04 06 o8 1.0

: N=8

| = posterior with flat prior

| = posterior with biased prior
|
|

00 02 04 06 o8 1.0

: N=32

| = posterior with flat prior

| = posterior with biased prior
|
|
|

1
2
Tp

O aNWsE O N O aNW O N® O a N W N®

7_ 0_ 00 02 04 OIB o8 - 1.0
* priors regularize data for small data A
e but large data overwhelms priors : A e

N=500
15 = nosterior with flat prior
= nosterior with biased prior
10

|
5 |
AM 207 |
0 I

00 02 04 06 o8 dy 1.0



Exchangeability

Lets assume that the number of children of a women in any one of
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a
permutation of variables.

This is really a statement about what is I[ID and what is not.

It depends on how much knowledge you have...

@AM 207
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100

&AM 207

Posterior Predictives

p(y°| D) = / d6p(y*10)p(6] D)

Sampling easy (mothers poisson-gamma):

postpredl = poisson.rvs(thetaltrace)
postpred?2 = poisson.rvs(thetaltrace)

Exact: Negative Binomial (requires math):

o (a+ D y)
By’ = (b+ N)

var|y'| = b+ N (N+b+1).
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Posterior Predictive Smear

Posterior probability/y/y/‘/‘ \
2500

Sampling distributions 2000
: 0

0.1 0.2 0.3 04 05 06 Ir 4 0.8 .9
||... |”||a ||H|I| .||| ||| n|| |||| 0|| hl. lII”ll c||||| ..||

Posterior predictive

I | predictive
plug-in (MAP)

- 1500
Posterior predictive
distribution
1000
3 6 9
number of water samples
500
0
-2 0

pp vs sampling distrib at MAP —
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Partial pooling: Hierarchical
Model

0;s drawn from "population distribution"
given by a conjugate Beta prior Beta(a, §)

with hyperparameters o and 3.

@ Hyperparameters
b
@ Parameters

Observations
s=1,....n @ @ Y"'l @

Plate representation “Unrolled” Graph

0; ~ Beta(a, B).

70
p(O|a, B) = H Beta(0;, a, B).
i=1

@AM 207
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Key Idea: Share statistical strength
e Some units (experiments) statistically more robust

e Non-robust experiments have smaller samples or outlier like
behavior

 Borrow strength from all the data as a whole through the
estimation of the hyperparameters

e regularized partial pooling model in which the "lower"
parameters (@s) tied together by "upper level" hyperparameters.

@AM 207
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Empirical Bayes or Type-2 Likelihood

Posterior-predictive distribution, as a function of upper level
parameters n = (a, B).

p(y*|D,n) = / dop(y*|0) p(6| D, n)

A likelihood with parameters n and simply use maximume-likelihood with
respect to n to estimate these n using our "data" y*

Used in GPs, even can be sampled from

@AM 207
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Method

Maximum Likelihood
MAP estimation

ML-2 (Empirical Bayes)
MAP-2

Full Bayes

&AM 207

Levels of Bayes

Definition

§ = argmazyp(D)\6)

6 = argmazyp(D|0)p(6|n)
i = argmaz, [ dfp(D|0)p(6
i = argmaz, [ d6p(D|0)p(6

p(8,n|D) o< p(D|0)p(6|n)p(n)

n) = argmaz,p(D|n)

np(n) = argmaz,p(D|n)p(n)
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Howto Sampling

e a DAG, with observations at the bottom of a tree, next layer
intermediate parameters, upper layers hyper-parameters

e sample conditionals from parents up the tree.
e general structure is sampling steps inside Gibbs

e stan, pymcd3 all have this structure

@AM 207
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70

Bayesian Regression

* posterior narrower (y spread) than PP

e supervised learning, a distrib at each z

05
00 <
=7l
-05 -
1.0
-05 00 10 -05 00 05 10
10
\ .
00 e
-05 /
-1.0
-10 -05 00 05 10
10
i
Y o
>7
5 00
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Model reparametrization helps samplers

e make parameters identifiable

e center covariates

* in hierarchical models, try and compress the hierarchy. Eg gelman
schools reparametrization trick
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glms

e linear regression with a link. likelihoods chosen MAXENT

f(p;) = a + Bz; where p; is the parameter at the ith data point.

For most GLMs, the common links we use are the logit link to
model the space of probabilities, and the log link which you will use
here to enforce positiveness on a parameter.

@AM 207 50



Oceanic tools

From Mcelreath:

The island societies of Oceania provide a natural
experiment in technological evolution. Different
historical island populations possessed tool kits of
different size. These kits include fish hooks, axes, boats,
hand plows, and many other types of tools. A number
of theories predict that larger populations will both
develop and sustain more complex tool kits. So the
natural variation in population size induced by natural
variation in island size in Oceania provides a natural
experiment to test these ideas. It's also suggested that
contact rates among populations effectively increase
population size, as it's relevant to technological
evolution. So variation in contact rates among Oceanic
societies is also relevant. (McElreath 313)

&AM 207
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culture population | contact | total_tools |mean_TU |logpop clevel
0 |Malekula ([1100 low 13 3.2 7.003065 |0
1 [ Tikopia 1500 low 22 4.7 7.313220 |0
2 | Santa Cruz | 3600 low 24 4.0 8.188689 |0
3 |Yap 4791 high 43 5.0 8.474494 |1
4 | Lau Fiji 7400 high 33 5.0 8.909235 |1
S | Trobriand |8000 high 19 4.0 8.987197 |1
6 | Chuuk 9200 high 40 3.8 9.126959 (1
7 |Manus 13000 low 28 6.6 9.472705 |0
8 | Tonga 17500 high 55 5.4 9.769956 (1
9 | Hawalii 275000 low 71 6.6 12.524526 |0
&AM 207

Model M1

T; ~ Poisson(\;)
log(Ai) = o+ Bplog(
a ~ N(0,100)
Bp ~ N(0,1)
Bc ~ N(0,1)
Bpc ~ N(0,1)

with pm.Model() as ml:
betap = pm.Normal('"betap", 0, 1)
betac = pm.Normal('"betac", 0, 1)
betapc = pm.Normal("betapc", @, 1)
alpha = pm.Normal("alpha", @, 100)
loglam = alpha + betap*df.logpop +
betac*df.clevel + betapc*df.clevel*df.logpop
y = pm.Poisson('"ntools"

with ml:
trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100% | NI | 200000/200000 [00:15<00:00, 13019.16it/s]
100% || 10000/10000 [01:59<00:00, 83.80it/s]

P;) + BcC; + BpcCilog(

, mu=t.exp(loglam), observed=df.total_tools)

12683.03it/s]

F;)
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Oceanic Tools Correlations: T; ~ Poisson(\;)

Example of GP
log Ai = a+ Tsocieryli] + Bplog P,

S e v ~ MVNormal((0,...,0),K)
Ky = 7 exp(~D}) + 5,(0.01)
a ~ Normal(0, 10)
Bp ~ Normal(0, 1)
1° ~ HalfCauchy(0, 1)
p* ~ HalfCauchy(0, 1)

&AM 207
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Generating curves from a kernel-based covariance

15

0

1

| =50.0

15

10

54
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a Gaussian Process defines a prior distribution over functions!

Once we have seen some data, this prior can be converted to a

posterior over functions, thus restricting the set of functions that
we can use based on the data.

@AM 207
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KEY INSIGHT:

MARGINAL IS DECOUPLED

...for the marginal of a gaussian, only the covariance of the block of the
matrix involving the unmarginalized dimensions matters! Thus "if you
ask only for the properties of the function (you are fitting to the data) at
a finite number of points, then inference in the Gaussian process will
give you the same answer if you ignore the infinitely many other points,
as if you would have taken them all into account!”
-Rasmunnsen

@AM 207
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p(f* |y) =N (ue + Ko (K +0°1) " (y — p), Kuw — Ku(K 40 I) T K])

EQUALS Predictive
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MODEL
CHECKING




Multiple replications of the posterior predictive

p({y'}) = / p({y"}6)p(6/D)db, observed data: D = {y}

Replicated Data: {y, }: data seen tomorrow if experiment replicated
with same model and value of 6 producing todays data {y}.

{y,} comes from posterior predictive, and if there are covariates
{x*}, then {y, } is calculated at those covariates only

(sample ppc).

@AM 207
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Departure from usual
predictive sampling ;

Sample an entire {y, } at each 6 from trace.

For example the minimum value of speed of light in o . 30 o0
20 predictive replications.

10
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-50-46-30-20-10 0 10 20 30 40 -5G-46-36-26-10 0 10 20 30 40

-50-46-30-20-10 0 10 20 30 40 -5G-46-36-26-10 0 10 20 30 40

‘|| 1|’|

-50-46-30-20-10 0 10 20 30 40 -50-40-30-26-10 0 10 20 30 40

-50-46-30-20-10 0 10 20 30 40 -50-40-30-26-10 0 10 20 30 40

! .
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Do these even look similar??
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Visual Checking
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Oceanic Tools counterfactual checking

3.0

2.5 _\

betap betac 7 \
20 ¥
010 015 0.20 0.25 0.30 0.35 040 —4 3 2 -1 0 1 2 3 4 15
betapc Iph
mean=0.042 /
. 1.0 r‘
-03 02 -01 00 01 0.2 03 04 05 —05 00 0. 1.0 1.5 20 25 05 M \M
0.0

-04 -0.2 0.0 0.2 04

&AM 207



MODEL COMPARISON
AND ENSEMBLING



Model comparison

The key idea in model comparison is that we will sort our average utilities in some order. The exact values are not
important, and may be computed with respect to some true distribution or true-belief distribution M.

a( My, ax,) — / dy* u(an, v )p(y* | D, M)

where a;, is the optimal prediction under the model M;,. Now we compare the actions, that is, we want:

M = arg max a( My, ag)

No calibration, but calculating the standard error of the difference can be used to see if the difference is
significant, as we did with the WAIC score
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Deviance

D(q) = —22109(%')’

then

D1 (p,q) — Dgr(p, ) =

N
More generally: D(q) = _7Ep log(q)]
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deviance
48 50 52 54 56 58 60

AIC

Akaike Information Criterion, or AIC:

N =20 N =100
§ - AlIC = -Dt'raz'n = 2p
- P = Il ™ | ‘Q{4.1
2 \\\\’ = 8 [ - \\
j “o w0 \ Dtraz’n = —2 % log(p(y|9mle)
© 53 76 9.7 g 2 \\\ -
& i OIT ‘1  multivariate gaussian posterior
ol Q| 49 |71 8.5
2 | s o flat priors
1 2 3 4 5 1 2 3 4 5
number of parameters number of parameters ° data S>> parameters
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Bayesian deviance

* D(q) = —% »[log(pp(y))] posterior predictive for points y on the test set or future data

e replace joint posterior predictive over new points y by product of marginals: ELPD:

Z E,[log(pp(y:))]

e Since we do not know the true distribution p, replace elpd: Z E,[log(pp(y;))] by the computed

"log pointwise predictive density" (Ippd) in-sample

D log (p(y;16)) =) _ log (% Zp@ﬁl@s))
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WAIC

WAIC = lppd + 2pw

where

pw = 2 Z (log(Epost [P(yi|0)] — Epost [log(p(yi|0))))

Once again this can be estimated by

D _ Varyos[log(p(y:|6))]
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Definitions

e dWAIC is the difference between each WAIC
and the lowest WAIC.

e SE is the standard error of the WAIC estimate.

e dSE is the standard error of the difference in
WAIC between each model and the top-
ranked model.

exp(—3dWAIC;)
> exp(—3dWAIC;)

w; =

read each weight as an estimated probability
that each model will perform best on future data.
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LOOCV

e Fit a model on N-1 data points, and use the Nth point as a validation point.

e the N-point and N-1 point posteriors are likely to be quite similar, use importance sampling. Fit the full
posterior once. Then we have

_ p(98|y—i) x 1
p(0sly) — p(y:il0s,y—i)

Wy

* the importance sampling weights can be unstablein the tails, pymc (pm. Loo) fits a generalized pareto to the
tail (largest 20% importance ratios) for each held out data point i (a MLE fit). Smooths out any large variations.

elpdloo — Z log(p(yi |y_z)) — Z log ( Zs ’;Ssptf;:/: ‘93) )
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What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the
same likelihood, the latter can be used with models having the same likelihood.

2. WAIC is fast and computationally less intensive, so for same-likelihood models

(especially nested models where you are really performing feature selection), it is
the first line of attack

3. One does not always have to do model selection. Sometimes just do posterior
predictive checks to see how the predictions are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predictive performance within an existing

cluster or group. Cross validation is best for new observations from new groups

@AM 207
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Bayesian Model Averaging

pema(Y’|z", D) ZP “|z*, D, My )p(Mj|D)

where the averaging is with repect to weights w;
posterior probabilities of the models M,..

Use the weights from the WAIC
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Counterfactual PP and ensembling via weights
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0 0
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Xesian Workflow
(from @ericnovik)

p(y| X, 0) * p(6) p(fly, X)

Gather Prior Formulate a STV EVCRELC ot cara gho Fit the model to
: recover
Knowledge generative model data real data

parameters

Evaluate and
Add Structure to § « criticize the

Predict for each Inference

Maximize Set up a utility ..
decision
A7 function U
(Cfayd) unction U(x) p(xld)
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PRIORS

choose likelihoods with MAXENT

choose priors as non-informative, e.g.

uniform or Jeffreys

better still: choose priors as weakly
informative/regularizing

helps with sampler performance

sensible parameter space, should
correspond to scales and units of
process being modeled
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Weakly informative or regularizing priors

e these are the priors we will concern ourselves most with
e restrict parameter ranges

 help samplers

e regularizing priors may have us using the data "twice" (hierachical
models)

e see https:/github.com/stan-dev/stan/wiki/Prior-Choice-
Recommendations and Stan Manual
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The Workflow (from Betancourt, and Savage)
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Prior to Observation

1. Define Data and interesting statistics
2. Build Model

3. Analyze the joint, and its data marginal (prior predictive) and its summary statistics
4. fit posteriors to simulated data to calibrate

e check sampler diagnostics, and correlate with simulated data

e use rank statistics to evaluate prior-posterior consistency

e check posterior behaviors and behaviors of decisions
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Posterior to Observation

1. Fit the Observed Data and Evaluate the fit

e check sampler diagnostics, poor performance means generative model not consistent with actual data
2. Analyze the Posterior Predictive Distribution

e do posterior predictive checks, now comparing actual data with posterior-predictive simulations

e consider expanding the model
3. Do model comparison

e usually within a nested model, but you might want to apply a different modeling scheme, in which
case use loo

e you might want to ensemble instead
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MIXTURES supervised formulation

Z ~ Bernoulli(\)
X|Z =0~ N(MQ,ZQ), X‘Z =1~ N(ul,Zl)

Full-data loglike: [(z, 2|\, o, p1,3) = — ZlOg((ZW)n/2|Z|1/2)

m m

_%ZZ CC_,UzZ x—yz —I—i Zz log)\—l—(l—zz)log(l—)‘)]

1=1 1=1 1=
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Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U, )p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.
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Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables z are observed.

In other words, we can write the full-data likelihood p(x, z)

In Unsupervised Learning, Latent Variables z are hidden.

We can only write the observed data likelihood:
- Yr) = Y pla)o(xla)

@AM 207
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EM

1. Start with p(z|6)(red curve), 6,4.

2. Until convergence:

1. E-step: Evaluate q(z, 0,4) = p(z|z, 0,14)
which gives rise to ELBO(6):
L(q(z,004),0)(blue curve) whose value

equals the value of p(z|0) at 0,4.

2. M-step: maximize ELBO (or Q func) wrt
0 togeth,,.,.

3. Set gold — Onew ’ 90.](1 énew .
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VARIATIONAL
INFERENCE




Variational Inference Core Ildea

z is now all parameters. Dont distinguish
from 6.

Restricting to a family of approximate

d
t

istributions D over z, find a member of
nat family that minimizes the KL

C

lvergence to the exact posterior. An

optimization problem:

q (2) = ar(g)r;l;n KL(q(2)||p(z|z))
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Mean Field: Find a ¢ such that:

KL + ELBO = log(p(x)): KL minimized means ELBO maximized.

Choose a "mean-field" ¢ such that:

m

q(2) = || 9;(2)

j=1

Each individual latent factor can take on any paramteric form
corresponding to the latent variable.
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ADVI

e CAVI does not scale

Core ldea:

e Use gradient based optimization, do it on less data

e do it automatically
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What does ADVI do?

1. Transformation of latent parameters (T transform)
e reparametrize mean field parameters to the real line

2. Standardization transform for posterior to push gradient inside
expectation (S transform)

3. Monte-Carlo estimate of expectation

4. Hill-climb using automatic differentiation
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Two ideas from Yao et. al.

e pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementation, WIP). The
Idea comes from the process of smoothing in LOOCV estimation

e VSBC (variational simulation based callibration) : Extends
calibration from Bayesian Workflow to variational case. pymc3

experimentation by @junpenglao here, WIP
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https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb

Why use VB: Deep Generative Models

e simply not possible to do inference in large models

e inference in neural networks: understanding robustness, etc

e hierarchical neural networks (perhaps on exam)

e Mixture density networks: mixture parameters are fitted using ANNs
e extension to generative semisupervised learning

e variational autoencoders
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https://arxiv.org/pdf/1406.5298.pdf
https://arxiv.org/pdf/1312.6114.pdf

Big Ideas
e |learning is possible because there is a compressive manifold on which the
data lives
e through SGD, HMC, etc we try tolearn about this manifold

e principled modeling can be done by combining known schemes such as
poisson GLM with deep networks

* networks (which are just complex models) can be used at other places such
as variational posteriors

e priors will regularise for us!
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Interesting Times

e we progress by first predicting, and then understanding the
robustness of our inference: posteriors and error bars

« MCMC/HMC, bayesian workflow, generative models, deep
generative models and variational inference are at the cutting edge

e we have tried in this course to cover the basics and then be at this
edge in places
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What you have done and should do

e alot of practice with lecture examples, labs, and homework
 been at the edge with your paper
e stay at the edge! Twitter is the place to be.

e follow folks like Andrew Gelman, Michael Betancourt, Jim Savage, Dan
Simpson, lan Goodfellow, Aki Vehtari, Dustin Tran, BayesGroup, Stephen
Merity, Jeremy Howard, Roger Grosse, Ferenc Huszar, Alex D'Amour, Tom

Wiecki, Colin Carrol, Tom Augsperger, Francios Chollet, Junpeng Lao,
Richard McElreath
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What Classes Should | take?

e Tamara Broderick at MIT, Bayesian Stats

e Denba's Decision Theory Course

e CS281 by Sasha Rush

e A host of stats courses: Statistical Nachine Learning, Bayesian Inference, glms

e Coursera Binge Watch: Daphne Koller's PGM course. The Bayesian part of
Pedro Domingo's Machine Learning Course. Also Yaser Abu Mustafa's
Learning from Data for Statistical Learning.
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http://www.tamarabroderick.com/course_6_882_2018_spring.html
https://harvard-ml-courses.github.io/cs281-web/#home_tab

Books and Key Resources

e Our textbooks. Especially BDA for advanced stuff

e Murphy's Machine Learning a probabilistic perspective
e Bishops book (now online for free).

e Stan Manual and User guide. The User guide is priceless

e Stan-con Helsinki Videos
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https://mc-stan.org/docs/bayes-stats-stan/index.html
https://www.youtube.com/playlist?list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
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https://www.youtube.com/watch?v=yG8o47npQug

