
Lecture 26

END OF
DAYS
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What was this course about?

• Density Es*ma*on. (Also called unsupervised or representa4on 
learning)

• Genera*ve Models in sta4s4cs and machine learning..a 
principled way of modeling (both supervised and unsupervised)

• Being Bayesian: a self-consistent process to carry out this 
modeling

• Sampling and stochas*c op*miza*on: the technology needed
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Along the way we

• learn how to regularize models

• deal with data computa5onally large/small and sta5s5cally small/large

• learn how to op5mize objec5ve func5ons such as loss func5ons using 
Stochas5c Gradient Descent

• Perform sampling and MCMC to solve a variety of problems, 
especially Bayes

• Learn how to use parametric, and non-parametric methods
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Concepts running through:
Hidden Variables, marginalized

Tes$ng, tes$ng, tes$ng
Differen'a'on vs Integra'on

Frequen'st vs Bayesian
Genera&ve Models
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SMALL WORLD vs BIG 
WORLD

Small world:

Big World:
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Dont Overfit
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KL-Divergence: compare model to nature

KL divergence measures distance/dissimilarity of the two distribu9ons p(x) 
and q(x).

• used for VI, EM, a probabilis4c loss func4on
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Frequen'st Sta's'cs

"data is a sample from an exis/ng popula)on"

• data is stochas+c, variable; parameters fixed

• fit a parameter

• samples (or bootstrap) induce a sampling distribu+on on any 
es+mator

• example of a very useful es+mator: MLE
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Informa(on Entropy and MAXENT

• what would be the least surprising distribu3on, the one with the 
least addi3onal assump3ons (most conserva3ve), the one that 
can happen in the most ways consistent with constraints

• most common distribu3ons used as likelihoods (and priors) are in 
the exponen3al family, MAXENT subject to different constraints.
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SAMPLE vs POPULATION

Want: 

LLN: 

 representa)ve 
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Statement of the Learning 
Problem

The sample must be representa/ve of the 
popula/on!

A: Empirical risk es/mates in-sample risk.
B: Thus the out of sample risk is also small.
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Stochas(c Gradient Descent

ONE POINT AT A TIME

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad

Mini-Batch: do some at a 1me
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So#max Formula,on of Logis,c Regression
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Backprop: Reverse Mode Differen4a4on

Write as:
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Law of Large numbers, LOTUS, MC

Let  be a sequence of IID values from random variable , which has finite mean . 
Let:

 then 

• Expecta)ons become sample averages. Convergence for large N.

• allows for monte-carlo
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NEED SAMPLES: GENERATE 
THEM!

• Inverse method, Rejec2on (on steroids)

• Stra2fica2on to reduce variance

• Importance (for expecta2ons)

• MCMC, MH, HMC, Slice, ADVI, etc

• integrals (marginalize) by ignoring 
dimensions in histogram
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MCMC Intui)on: proposal approaches typical set

Instead of sampling p we sample q, yielding a new state, and a new proposal distribu7on from which to sample.
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Cri$cal: explore the typical set: sta$onarity
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Metropolis and MH
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The idea of Gibbs

, a 

Sta&onary distribu&on.

: Sample 

alternately to get transi1ons.

Can sample  marginal and  so can 
sample the joint .
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Data Augmenta+on

The difference from Gibbs Sampling: the other variable, say , is to 
be treated as latent.

The game is to construct a joint  such that we can sample 
from  and , and then find the marginal
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HMC: need glide

DATA AUGMENTATION: with an 
addi*onal momentum gives energy 

Hamiltonian 

Hamiltonian flow: reversible, 3me-
invariant, volume-preserving
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Thrusters fire away

Choice of a kine,c energy term is choice 
of a condi,onal probability distribu,on 
over the "augmented" momentum such 
that:

.
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Tuning:

• The ideal kine,c energy interacts with 
target, in prac,ce we o7en use 

• Set inverse mass matrix to the covariance of 
the target distribu,on: maximally decorrelate 
the target. Do in warmup phase.

• use symplec,c integra,on

• need to determine L and .

• generally sta,c not good, under samples tails 
(high-energy microcanonicals). Es,mate 
dynamically: NUTS (pymc3 and Stan)
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Model convergence: be 
paranoid

• traces white noisy

• diagnose autocorrela3on, check parameter correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m samples

• traceplots from different star7ng points, different 
chains

• formal tests: Gewecke, Gelman-Rubin, Effec7ve 
Sample Size, accept rate

• HMC/NUTS: check divergences, check BFMI 
(condi7onal to marginal energy ra7o)
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STATS
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WHEN BAYES
from Jim Savage
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https://twitter.com/jim_savage_/status/983371427226308609
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Latent Variables

• dont think of bayes/frequen4st, think of observed  /Latent 

• anything unobserved is latent (this is the posterior predic4ve 
point of view,  as ), thus standard bayesian viewpoint: nuisance 
parameters are latent

• latent factors in matrix factoriza4on, mixtures, 
recommenda4ons...cluster s
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Genera&ve model

• The likelihood posits a data genera1ng process, where the data  are assumed drawn 
from the likelihood condi5oned on a par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the latent variables present in 
the data. The prior posits a genera1ng process of the hidden structure.
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Bayesian

• sample is the data, and is fixed

• parameter is stochas4c, has prior and posterior distribu4on

• posterior: , can summarize via MAP

• just bayes rule: 
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• prior-predic*ve = evidence:  a 

normaliza*on, useful for workflow and EB

• What if  is mul*dimensional? Marginal posterior: 

• posterior predic*ve: the distribu*on of a future data point :

.
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Marginaliza)on

Marginal posterior: 

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
    pd.Series(samps[20000::,0], name="$\mu$"),
    pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
    .plot_joint(
        sns.kdeplot,
    zorder=0, n_levels=6, alpha=1)

Marginals are just 1D histograms

plt.hist(samps[20000::,0])
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Bayesian Upda,ng
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Data Overwhelms priors

Define 

• priors regularize data for small data

• but large data overwhelms priors
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Exchangeability

Lets assume that the number of children of a women in any one of 
these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a 
permuta7on of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...
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Posterior Predic+ves

Sampling easy (mothers poisson-gamma):

postpred1 = poisson.rvs(theta1trace)
postpred2 = poisson.rvs(theta2trace)

Exact: Nega+ve Binomial (requires math):
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Posterior Predic+ve Smear

pp vs sampling distrib at MAP 
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Par$al pooling: Hierarchical 
Model

s drawn from "popula/on distribu/on" 
given by a conjugate Beta prior  

with hyperparameters  and .
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Key Idea: Share sta.s.cal strength

• Some units (experiments) sta1s1cally more robust

• Non-robust experiments have smaller samples or outlier like 
behavior

• Borrow strength from all the data as a whole through the 
es1ma1on of the hyperparameters

• regularized par/al pooling model in which the "lower" 
parameters ( s) 1ed together by "upper level" hyperparameters.
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Empirical Bayes or Type-2 Likelihood

Posterior-predic,ve distribu,on, as a func,on of upper level 
parameters .

A likelihood with parameters  and simply use maximum-likelihood with 
respect to  to es7mate these  using our "data" 

Used in GPs, even can be sampled from
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Levels of Bayes
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Howto Sampling

• a DAG, with observa2ons at the bo4om of a tree, next layer 
intermediate parameters, upper layers hyper-parameters

• sample condi2onals from parents up the tree.

• general structure is sampling steps inside Gibbs

• stan, pymc3 all have this structure
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Bayesian Regression

• posterior narrower (  spread) than PP

• supervised learning, a distrib at each 
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Model reparametriza.on helps samplers

• make parameters iden.fiable

• center covariates

• in hierarchical models, try and compress the hierarchy. Eg gelman 
schools reparametriza.on trick
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glms

• linear regression with a link. likelihoods chosen MAXENT

 where  is the parameter at the ith data point.

For most GLMs, the common links we use are the logit link to 
model the space of probabili:es, and the log link which you will use 
here to enforce posi:veness on a parameter.
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Oceanic tools

From Mcelreath:

The island socie-es of Oceania provide a natural 
experiment in technological evolu-on. Different 

historical island popula-ons possessed tool kits of 
different size. These kits include fish hooks, axes, boats, 
hand plows, and many other types of tools. A number 

of theories predict that larger popula-ons will both 
develop and sustain more complex tool kits. So the 

natural varia-on in popula-on size induced by natural 
varia-on in island size in Oceania provides a natural 

experiment to test these ideas. It's also suggested that 
contact rates among popula-ons effec-vely increase 

popula-on size, as it's relevant to technological 
evolu-on. So varia-on in contact rates among Oceanic 

socie-es is also relevant. (McElreath 313)
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Model M1

with pm.Model() as m1:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop +
        betac*df.clevel + betapc*df.clevel*df.logpop
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

with m1:
    trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100%|██████████| 200000/200000 [00:15<00:00, 13019.16it/s]   12683.03it/s]
100%|██████████| 10000/10000 [01:59<00:00, 83.80it/s]
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Oceanic Tools Correla.ons: 
Example of GP

We modeled society specific intercepts for oceanic tools as draws from a 0 mean mul6variate gaussian and 
correla6on func6on depending on distance: nearer socie6es have similar intercepts.

Covariance posteriors:
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Genera&ng curves from a kernel-based covariance
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a Gaussian Process defines a prior distribu2on over func2ons!

Once we have seen some data, this prior can be converted to a 
posterior over func6ons, thus restric6ng the set of func6ons that 
we can use based on the data.
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KEY INSIGHT:

MARGINAL IS DECOUPLED
...for the marginal of a gaussian, only the covariance of the block of the 
matrix involving the unmarginalized dimensions ma:ers! Thus "if you 

ask only for the proper?es of the func?on (you are fiBng to the data) at 
a finite number of points, then inference in the Gaussian process will 

give you the same answer if you ignore the infinitely many other points, 
as if you would have taken them all into account!"

-Rasmunnsen
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Condi&onal
EQUALS Predic.ve
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MODEL
CHECKING
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Mul$ple replica$ons of the posterior predic$ve

, observed data:  

Replicated Data: : data seen tomorrow if experiment replicated 
with same model and value of  producing todays data .

 comes from posterior predic-ve, and if there are covariates 
, then  is calculated at those covariates only 

(sample_ppc).
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Departure from usual 
predic1ve sampling

Sample an en)re  at each  from trace.

For example the minimum value of speed of light in 
20 predic8ve replica8ons.
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Visual Checking

Do these even look similar??
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Oceanic Tools counterfactual checking
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MODEL COMPARISON
AND ENSEMBLING
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Model comparison

The key idea in model comparison is that we will sort our average u7li7es in some order. The exact values are not 
important, and may be computed with respect to some true distribu7on or true-belief distribu7on .

where  is the op+mal predic+on under the model . Now we compare the ac+ons, that is, we want:

No calibra*on, but calcula*ng the standard error of the difference can be used to see if the difference is 
significant, as we did with the WAIC score
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Deviance

,

then

More generally: 
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AIC

Akaike Informa-on Criterion, or AIC:

• mul%variate gaussian posterior

• flat priors

• data >> parameters
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Bayesian deviance

•  posterior predic,ve for points  on the test set or future data

• replace joint posterior predic,ve over new points  by product of marginals: ELPD: 

• Since we do not know the true distribu,on , replace elpd:  by the computed 

"log pointwise predic,ve density" (lppd) in-sample
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WAIC

where

Once again this can be es-mated by
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Defini&ons

• dWAIC is the difference between each WAIC 
and the lowest WAIC.

• SE is the standard error of the WAIC es:mate.

• dSE is the standard error of the difference in 
WAIC between each model and the top-
ranked model.

read each weight as an es.mated probability 
that each model will perform best on future data.
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LOOCV

• Fit a model on N-1 data points, and use the Nth point as a valida6on point.

• the N-point and N-1 point posteriors are likely to be quite similar, use importance sampling. Fit the full 
posterior once. Then we have

• the importance sampling weights can be unstablein the tails, pymc (pm.loo) fits a generalized pareto to the 
tail (largest 20% importance ra>os) for each held out data point i (a MLE fit). Smooths out any large varia>ons.
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What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the 
same likelihood, the laAer can be used with models having the same likelihood.

2. WAIC is fast and computaEonally less intensive, so for same-likelihood models 
(especially nested models where you are really performing feature selecEon), it is 
the first line of aAack

3. One does not always have to do model selecEon. SomeEmes just do posterior 
predicEve checks to see how the predicEons are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predicEve performance within an exisEng 
cluster or group. Cross validaEon is best for new observaEons from new groups
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Bayesian Model Averaging

where the averaging is with repect to weights , the 
posterior probabili3es of the models .

Use the weights from the WAIC
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Counterfactual PP and ensembling via weights
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BAYESIAN
WORKFLOW
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(from @ericnovik)
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PRIORS

• choose likelihoods with MAXENT

• choose priors as non-informa;ve, e.g. 
uniform or Jeffreys

• beEer s;ll: choose priors as weakly 
informa;ve/regularizing

• helps with sampler performance

• sensible parameter space, should 
correspond to scales and units of 
process being modeled
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Weakly informa.ve or regularizing priors

• these are the priors we will concern ourselves most with

• restrict parameter ranges

• help samplers

• regularizing priors may have us using the data "twice" (hierachical 
models)

• see h:ps://github.com/stan-dev/stan/wiki/Prior-Choice-
RecommendaDons and Stan Manual
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The Workflow (from Betancourt, and Savage)
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Prior to Observa-on

1. Define Data and interes.ng sta.s.cs

2. Build Model

3. Analyze the joint, and its data marginal (prior predic.ve) and its summary sta.s.cs

4. fit posteriors to simulated data to calibrate

• check sampler diagnos.cs, and correlate with simulated data

• use rank sta.s.cs to evaluate prior-posterior consistency

• check posterior behaviors and behaviors of decisions
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Posterior to Observa-on

1. Fit the Observed Data and Evaluate the fit

• check sampler diagnos=cs, poor performance means genera=ve model not consistent with actual data

2. Analyze the Posterior Predic=ve Distribu=on

• do posterior predic=ve checks, now comparing actual data with posterior-predic=ve simula=ons

• consider expanding the model

3. Do model comparison

• usually within a nested model, but you might want to apply a different modeling scheme, in which 
case use loo

• you might want to ensemble instead
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MIXTURES supervised formula7on

, 

Full-data loglike: 
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Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.
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Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:
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ELBO
GREASE
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EM

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate  
which gives rise to ELBO( ): 

(blue curve) whose value 
equals the value of  at .

2. M-step: maximize ELBO (or Q func) wrt 
 to get .

3. Set 
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VARIATIONAL
INFERENCE
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Varia%onal Inference Core Idea

 is now all parameters. Dont dis1nguish 
from .

Restric(ng to a family of approximate 
distribu(ons D over , find a member of 
that family that minimizes the KL 
divergence to the exact posterior. An 
op(miza(on problem:

88



Mean Field: Find a  such that:

: KL minimized means ELBO maximized.

Choose a "mean-field"  such that:

Each individual latent factor can take on any paramteric form 
corresponding to the latent variable.
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ADVI
Core Idea:

• CAVI does not scale

• Use gradient based op6miza6on, do it on less data

• do it automa6cally
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What does ADVI do?

1. Transforma+on of latent parameters (T transform)

• reparametrize mean field parameters to the real line

2. Standardiza+on transform for posterior to push gradient inside 
expecta+on (S transform)

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on
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Two ideas from Yao et. al.

• pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementa>on, WIP). The 
idea comes from the process of smoothing in LOOCV es>ma>on

• VSBC (varia>onal simula>on based callibra>on) : Extends 
calibra>on from Bayesian Workflow to varia>onal case. pymc3 
experimenta>on by @junpenglao here, WIP
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https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb


Why use VB: Deep Genera1ve Models

• simply not possible to do inference in large models

• inference in neural networks: understanding robustness, etc

• hierarchical neural networks (perhaps on exam)

• Mixture density networks: mixture parameters are fi?ed using ANNs

• extension to generaBve semisupervised learning

• variaBonal autoencoders
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https://arxiv.org/pdf/1406.5298.pdf
https://arxiv.org/pdf/1312.6114.pdf


Big Ideas

• learning is possible because there is a compressive manifold on which the 
data lives

• through SGD, HMC, etc we try tolearn about this manifold

• principled modeling can be done by combining known schemes such as 
poisson GLM with deep networks

• networks (which are just complex models) can be used at other places such 
as variaEonal posteriors

• priors will regularise for us!
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Interes'ng Times
• we progress by first predic1ng, and then understanding the 

robustness of our inference: posteriors and error bars

• MCMC/HMC, bayesian workflow, genera1ve models, deep 
genera1ve models and varia1onal inference are at the cuBng edge

• we have tried in this course to cover the basics and then be at this 
edge in places
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What you have done and should do
• a lot of prac+ce with lecture examples, labs, and homework

• been at the edge with your paper

• stay at the edge! Twi=er is the place to be.

• follow folks like Andrew Gelman, Michael Betancourt, Jim Savage, Dan 
Simpson, Ian Goodfellow, Aki Vehtari, Dus+n Tran, BayesGroup, Stephen 
Merity, Jeremy Howard, Roger Grosse, Ferenc Huszar, Alex D'Amour, Tom 
Wiecki, Colin Carrol, Tom Augsperger, Francios Chollet, Junpeng Lao, 
Richard McElreath
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What Classes Should I take?
• Tamara Broderick at MIT, Bayesian Stats

• Denba's Decision Theory Course

• CS281 by Sasha Rush

• A host of stats courses: StaCsCcal Nachine Learning, Bayesian Inference, glms

• Coursera Binge Watch: Daphne Koller's PGM course. The Bayesian part of 
Pedro Domingo's Machine Learning Course. Also Yaser Abu Mustafa's 
Learning from Data for StaCsCcal Learning.
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http://www.tamarabroderick.com/course_6_882_2018_spring.html
https://harvard-ml-courses.github.io/cs281-web/#home_tab


Books and Key Resources

• Our textbooks. Especially BDA for advanced stuff

• Murphy's Machine Learning a probabilisBc perspecBve

• Bishops book (now online for free).

• Stan Manual and User guide. The User guide is priceless

• Stan-con Helsinki Videos
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https://mc-stan.org/docs/bayes-stats-stan/index.html
https://www.youtube.com/playlist?list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J


FIN
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https://www.youtube.com/watch?v=yG8o47npQug

