
Lecture 9

Bayesian Stats and Sampling



Last Time

• Bayesian Stats in detail

• Posterior, Posterior predic4ve

• Bayesian Stats



Today:

• Exchangeability and the exponen3al model

• Prior predic3ve

• Bayesian Regression

• Logis3c Regression

• Inverse Transform Sampling

• Rejec3on Sampling



Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters  are stochas3c random variables

• associate the parameter  with a prior distribu3on 

• The prior distribu3on generally represents our belief on 
the parameter values when we have not observed any 
data yet ( to be qualified later)

• obtain posterior distribu3ons

• predic3ve distribu3on from the posterior



Basic Idea

Get the joint Probability distribu3on

Now we condi*on on some random variables and 
learn the values of others.



Rules

1.

2.

 is called the marginal distribu.on of A, 
obtained by summing or marginalizing over .



Posterior

Posterior: 

Evidence: 



Marginaliza)on

Marginal posterior: 

Posterior Predic+ve: 

.



Basic Graph



Replica(ve Posterior Predic(ve

, observed 

data: 

Replicated Data: : data seen tomorrow if 
experiment replicated with same model and value of  
producing todays data .

 comes from posterior predic-ve. The idea is to 
make as many replica-ons as the size of your dataset.



Another way to sample

ppc_rep=np.empty((dataset_size, num_samples))
for i in range(dataset_size):
    ppc_rep[i,:] = distrib.rvs(param=posterior_samples)

For each data point, sample using the 
likelihood(sampling distribu7on) from  samples of 
the posterior. Gives an  sized posterior predic7ve at 
each "data point".

You can then slice the other way to get a dataset 
sized posterior-predic6ve





Departure from usual 
predic1ve sampling

Sample an en)re  at each  
from trace.

This allows to compute 
distribu3ons from the posterior 
predic3ve replica3ons for 
informal test sta3s3cs.

These processes are called 
Posterior Predic+ve Checks.

Replica(ve prior predic(ves are 
also useful for callibra(on.



Sufficient Sta+s+cs and the exponen+al 
family

Likelihood: 

 is said to be a sufficient sta+s+c for 



Poisson Gamma Example

The data consists of 155 women who were 40 years 
old. We are interested in the birth rate of women with 

a college degree and women without. We are told 
that 111 women without college degrees have 217 
children, while 44 women with college degrees have 

66 children.

Let  children for the  women without 
college degrees, and  for  women 
with college degrees.



Exchangeability

Lets assume that the number of children of a women 
in any one of these classes can me modelled as 
coming from ONE birth rate.

The in-class likelihood for these women is invariant to 
a permuta7on of variables.

This is really a statement about what is IID and what 
is not.

It depends on how much knowledge you have...



Poisson likelihood



Posterior

 

, total number of children in each class of mom, 
is sufficient sta+s+cs



Conjugate prior

Sampling distribu0on for : 

Form is of . In shape-rate parametriza3on 
(wikipedia)

Posterior: 



Complete Posterior

Mul$plies the 2 posteriors



Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance: 



Posteriors

np.mean(theta1), 
np.var(theta1) = 
(1.9516881521791478, 
0.018527204185785785)

np.mean(theta2), 
np.var(theta2) = 
(1.5037252100213609, 
0.034220717257786061)



Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:



But see width:

np.mean(postpred1), 
np.var(postpred1)=(1.976, 
1.8554239999999997)

Posterior predic,ve smears out posterior error with 
sampling distribu,on



Box's loop



(from @ericnovik)



Howell's data

• These are census data for the 
Dobe area !Kung San people

• Nancy Howell conducted 
detailed quan>ta>ve studies of 
this Kalahari foraging 
popula>on in the 1960s.



Model



Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of  assuming we
know ?

Prior for  is 



The conjugate of the normal is the normal itself.

Say we have the prior

posterior: 



Here

Define 

which is a weighted average of prior mean and 
sampling mean.



The variance is

or be&er

 as  increases, the data dominates the prior and the 
posterior mean approaches the data mean, with the 
posterior distribu3on narrowing...



Normal-Normal Posterior Predic0ve

So the posterior is

The corresponding posterior predic/ve is:

Predic've variance is uncertainty due to the obsv. 
noise plus uncertainty due to the parameters.





Bayesian Formula/on of 
Regression

Data 

All data points are combined into 
a  matrix .

Model:



Likelihood

The likelihood is, because we assume independency, 
the product



Prior 



Posterior

Inverse covariance 

where the new mean is 



Bayesian upda,ng

def update(x,y,likelihoodPrecision,priorMu,priorCovariance):
    postCovInv  = np.linalg.inv(priorCovariance) + 
        likelihoodPrecision*np.outer(x.T,x)
    postCovariance = np.linalg.inv(postCovInv)
    postMu =
        np.dot(
            np.dot(postCovariance,
                np.linalg.inv(priorCovariance)
        ),
        priorMu) 
        +likelihoodPrecision*
            np.dot(postCovariance,np.outer(x.T,y)).flatten()
    postW = lambda w: multivariate_normal.pdf(
        w, postMu, postCovariance)
    return postW, postMu, postCovariance



Posterior Predic+ve



Regulariza*on

priorPrecision/likelihoodPrecision

4.0

This ra(o is the ridge .



Regression, adding a 
predictor, weight



Priors



Posteriors



Posterior at weight 55

DO INTERCEPT SLOPE, AND WEIGHT 55



Posteriors on a grid

Why so 'ght?



Predic'ves on grid



Ok. We need Samples

• to compute expecta,ons, integrals and do 
sta,s,cs, we need samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to 
do integrals and expecta,ons



Inverse transform



algorithm

The CDF  must be inver1ble!

1. get a uniform sample  from 

2. solve for  yielding a new equa8on  
where  is the CDF of the distribu8on we desire.

3. repeat.



Why does it work?

 smallest x such that 

What distribu,on does random variable  
follow?

The CDF of y is . Since F is monotonic:

 is the CDF of y, thus  is the pdf.



Example: exponen,al

pdf:  for  and  

otherwise.

Solving for 



code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()





Rejec%on Sampling

• Generate samples from a uniform distribu3on with 
support on the rectangle

• See how many fall below  at a specific x.



Algorithm

1. Draw  uniformly from 

2. Draw  uniformly from 

3. if , accept the sample

4. otherwise reject it

5. repeat



example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
    # pick a uniform number on [xmin, xmax) (e.g. 0...10)
    x = np.random.uniform(xmin, xmax)
    # pick a uniform number on [0, ymax)
    y = np.random.uniform(0,ymax)
    # Do the accept/reject comparison
    if y < P(x):
        samples[accepted] = x
        accepted += 1

    count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000



problems

• determining the supremum may be costly

• the func6onal form may be complex for 
comparison

• even if you find a 6ght bound for the supremum, 
basic rejec6on sampling is very inefficient: low 
acceptance probability

• infinite support



Variance
Reduc&on



Rejec%on on steroids

Introduce a proposal density 
.

•  is easy to sample from 
and (calculate the pdf)

• Some  exists so that 
 in your en8re 

domain of interest

• ideally  will be somewhat 
close to 

• op8mal value for M is the 
supremum over your domain 



Algorithm

1. Draw  from your proposal 
distribu4on 

2. Draw  uniformly from [0,1]

3. if , accept the 
sample

4. otherwise reject it

5. repeat



Example

p = lambda x: np.exp(-x)  # our distribution
g = lambda x: 1/(x+1)  # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
# range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

    # Sample from g using inverse sampling
    u = np.random.uniform(umin, umax)
    xproposal = np.exp(u) - 1

    # pick a uniform number on [0, 1)
    y = np.random.uniform(0,1)

    # Do the accept/reject comparison
    if y < p(xproposal)/g(xproposal):
        samples[accepted] = xproposal
        accepted += 1

    count +=1

print("Count", count, "Accepted", accepted)
# get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000



MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid 
func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?



Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy:  and  
with the probability that the 
sample is a '1' ( ).



Then, the condi,onal probabili,es of  or  
given a par,cular sample's features  are:

These two can be wri/en together as

BERNOULLI!!



Mul$plying over the samples we get:

A noisy  is to imagine that our data  was generated 
from a joint probability distribu7on . Thus we 
need to model  at a given , wri<en as , and 
since  is also a probability distribu7on, we have:



Indeed its important to realize that a par1cular 
sample can be thought of as a draw from some "true" 
probability distribu1on.

 maximum likelihood es$ma$on maximises the 
likelihood of the sample y,

Again, we can equivalently maximize



Thus


