
Lecture 9

Bayesian Stats and Sampling

Last Time

• Bayesian Stats in detail

• Posterior, Posterior predic4ve

• Bayesian Stats

Today:

• Exchangeability and the exponen3al model

• Prior predic3ve

• Bayesian Regression

• Logis3c Regression

• Inverse Transform Sampling

• Rejec3on Sampling

Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters are stochas3c random variables

• associate the parameter with a prior distribu3on

• The prior distribu3on generally represents our belief on
the parameter values when we have not observed any
data yet (to be qualified later)

• obtain posterior distribu3ons

• predic3ve distribu3on from the posterior

Basic Idea

Get the joint Probability distribu3on

Now we condi*on on some random variables and
learn the values of others.

Rules

1.

2.

 is called the marginal distribu.on of A,
obtained by summing or marginalizing over .

Posterior

Posterior:

Evidence:

Marginaliza)on

Marginal posterior:

Posterior Predic+ve:

.

Basic Graph

Replica(ve Posterior Predic(ve

, observed

data:

Replicated Data: : data seen tomorrow if
experiment replicated with same model and value of
producing todays data .

 comes from posterior predic-ve. The idea is to
make as many replica-ons as the size of your dataset.

Another way to sample

ppc_rep=np.empty((dataset_size, num_samples))
for i in range(dataset_size):
 ppc_rep[i,:] = distrib.rvs(param=posterior_samples)

For each data point, sample using the
likelihood(sampling distribu7on) from samples of
the posterior. Gives an sized posterior predic7ve at
each "data point".

You can then slice the other way to get a dataset
sized posterior-predic6ve

Departure from usual
predic1ve sampling

Sample an en)re at each
from trace.

This allows to compute
distribu3ons from the posterior
predic3ve replica3ons for
informal test sta3s3cs.

These processes are called
Posterior Predic+ve Checks.

Replica(ve prior predic(ves are
also useful for callibra(on.

Sufficient Sta+s+cs and the exponen+al
family

Likelihood:

 is said to be a sufficient sta+s+c for

Poisson Gamma Example

The data consists of 155 women who were 40 years
old. We are interested in the birth rate of women with

a college degree and women without. We are told
that 111 women without college degrees have 217
children, while 44 women with college degrees have

66 children.

Let children for the women without
college degrees, and for women
with college degrees.

Exchangeability

Lets assume that the number of children of a women
in any one of these classes can me modelled as
coming from ONE birth rate.

The in-class likelihood for these women is invariant to
a permuta7on of variables.

This is really a statement about what is IID and what
is not.

It depends on how much knowledge you have...

Poisson likelihood

Posterior

, total number of children in each class of mom,
is sufficient sta+s+cs

Conjugate prior

Sampling distribu0on for :

Form is of . In shape-rate parametriza3on
(wikipedia)

Posterior:

Complete Posterior

Mul$plies the 2 posteriors

Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance:

Posteriors

np.mean(theta1),
np.var(theta1) =
(1.9516881521791478,
0.018527204185785785)

np.mean(theta2),
np.var(theta2) =
(1.5037252100213609,
0.034220717257786061)

Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:

But see width:

np.mean(postpred1),
np.var(postpred1)=(1.976,
1.8554239999999997)

Posterior predic,ve smears out posterior error with
sampling distribu,on

Box's loop

(from @ericnovik)

Howell's data

• These are census data for the
Dobe area !Kung San people

• Nancy Howell conducted
detailed quan>ta>ve studies of
this Kalahari foraging
popula>on in the 1960s.

Model

Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of assuming we
know ?

Prior for is

The conjugate of the normal is the normal itself.

Say we have the prior

posterior:

Here

Define

which is a weighted average of prior mean and
sampling mean.

The variance is

or be&er

 as increases, the data dominates the prior and the
posterior mean approaches the data mean, with the
posterior distribu3on narrowing...

Normal-Normal Posterior Predic0ve

So the posterior is

The corresponding posterior predic/ve is:

Predic've variance is uncertainty due to the obsv.
noise plus uncertainty due to the parameters.

Bayesian Formula/on of
Regression

Data

All data points are combined into
a matrix .

Model:

Likelihood

The likelihood is, because we assume independency,
the product

Prior

Posterior

Inverse covariance

where the new mean is

Bayesian upda,ng

def update(x,y,likelihoodPrecision,priorMu,priorCovariance):
 postCovInv = np.linalg.inv(priorCovariance) +
 likelihoodPrecision*np.outer(x.T,x)
 postCovariance = np.linalg.inv(postCovInv)
 postMu =
 np.dot(
 np.dot(postCovariance,
 np.linalg.inv(priorCovariance)
),
 priorMu)
 +likelihoodPrecision*
 np.dot(postCovariance,np.outer(x.T,y)).flatten()
 postW = lambda w: multivariate_normal.pdf(
 w, postMu, postCovariance)
 return postW, postMu, postCovariance

Posterior Predic+ve

Regulariza*on

priorPrecision/likelihoodPrecision

4.0

This ra(o is the ridge .

Regression, adding a
predictor, weight

Priors

Posteriors

Posterior at weight 55

DO INTERCEPT SLOPE, AND WEIGHT 55

Posteriors on a grid

Why so 'ght?

Predic'ves on grid

Ok. We need Samples

• to compute expecta,ons, integrals and do
sta,s,cs, we need samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to
do integrals and expecta,ons

Inverse transform

algorithm

The CDF must be inver1ble!

1. get a uniform sample from

2. solve for yielding a new equa8on
where is the CDF of the distribu8on we desire.

3. repeat.

Why does it work?

 smallest x such that

What distribu,on does random variable
follow?

The CDF of y is . Since F is monotonic:

 is the CDF of y, thus is the pdf.

Example: exponen,al

pdf: for and

otherwise.

Solving for

code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
generate uniform samples in our range then invert the CDF
to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()

Rejec%on Sampling

• Generate samples from a uniform distribu3on with
support on the rectangle

• See how many fall below at a specific x.

Algorithm

1. Draw uniformly from

2. Draw uniformly from

3. if , accept the sample

4. otherwise reject it

5. repeat

example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
 # pick a uniform number on [xmin, xmax) (e.g. 0...10)
 x = np.random.uniform(xmin, xmax)
 # pick a uniform number on [0, ymax)
 y = np.random.uniform(0,ymax)
 # Do the accept/reject comparison
 if y < P(x):
 samples[accepted] = x
 accepted += 1

 count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000

problems

• determining the supremum may be costly

• the func6onal form may be complex for
comparison

• even if you find a 6ght bound for the supremum,
basic rejec6on sampling is very inefficient: low
acceptance probability

• infinite support

Variance
Reduc&on

Rejec%on on steroids

Introduce a proposal density
.

• is easy to sample from
and (calculate the pdf)

• Some exists so that
 in your en8re

domain of interest

• ideally will be somewhat
close to

• op8mal value for M is the
supremum over your domain

Algorithm

1. Draw from your proposal
distribu4on

2. Draw uniformly from [0,1]

3. if , accept the
sample

4. otherwise reject it

5. repeat

Example

p = lambda x: np.exp(-x) # our distribution
g = lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

 # Sample from g using inverse sampling
 u = np.random.uniform(umin, umax)
 xproposal = np.exp(u) - 1

 # pick a uniform number on [0, 1)
 y = np.random.uniform(0,1)

 # Do the accept/reject comparison
 if y < p(xproposal)/g(xproposal):
 samples[accepted] = xproposal
 accepted += 1

 count +=1

print("Count", count, "Accepted", accepted)
get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000

MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid
func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?

Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy: and
with the probability that the
sample is a '1' ().

Then, the condi,onal probabili,es of or
given a par,cular sample's features are:

These two can be wri/en together as

BERNOULLI!!

Mul$plying over the samples we get:

A noisy is to imagine that our data was generated
from a joint probability distribu7on . Thus we
need to model at a given , wri<en as , and
since is also a probability distribu7on, we have:

Indeed its important to realize that a par1cular
sample can be thought of as a draw from some "true"
probability distribu1on.

 maximum likelihood esmaon maximises the
likelihood of the sample y,

Again, we can equivalently maximize

Thus

