
Lecture 8

Bayesian Stats and Sampling

Today:

• Bayesian Stats recap

• replica0ve posterior predic0ves

• Normal-normal Model

• exponen0al model

• Inverse Transform Sampling

• Rejec0on Sampling

Last Time

• Entropy

• Maximum Likelihood and Entropy

• Bayesian Stats

Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters are stochas3c random variables

• associate the parameter with a prior distribu3on

• The prior distribu3on generally represents our belief on
the parameter values when we have not observed any
data yet (to be qualified later)

• obtain posterior distribu3ons

• predic3ve distribu3on from the posterior

Basic Idea

Get the joint Probability distribu3on

Now we condi*on on some random variables and
learn the values of others.

Rules

1.

2.

 is called the marginal distribu.on of A,
obtained by summing or marginalizing over .

Posterior

Posterior:

Evidence:

Marginaliza)on

Marginal posterior:

Posterior Predic+ve:

.

Basic Graph

Predic'ves

The distribu,on of a future data point :

Posterior predic,ve:

.

The distribu,on of a data point from the prior:

Prior predic*ve:

Globe Toss Model

• Seal tosses globe, is true water frac3on

• data WLWWWLWLW

• Modeled using the Binomial Distribu3on, which is
the distribu3on of a set of Bernoulli random
variables.

Griddy Posterior

prior_pdf = lambda p: 1
like_pdf = lambda p: binom.pmf(k=6, n=9, p=p)
post_pdf = lambda p: like_pdf(p)*prior_pdf(p)
p_grid = np.linspace(0., 1., 1000)
post_vals = post_pdf(p_grid)
post_vals_normed = post_vals/np.sum(post_vals)
grid_post_samples = np.random.choice(p_grid, size=10000, replace=True, p=post_vals_normed)

• create a grid, evaluate posterior on it

• discrete-normalize this posterior to get
probabili8es

• sample the grid according to these probabili8es

Laplace Approxima.on for

Unnormalized posterior:

Let then we get un-normalized Gaussian:

,

whose normaliza.on (we then use to approximate the

normaliza.on of .

Griddy and Laplace, together

Conjugate Prior

• A conjugate prior is one which, when mul0plied
with an appropriate likelihood, gives a posterior
with the same func0onal form as the prior.

• Likelihoods in the exponen0al family have
conjugate priors in the same family

• analy0cal tractability AND interpretability

• The Beta distribu/on is conjugate to the Binomial
distribu/on

Because of the conjugacy, this turns out to be:

• a prior is equivalent to a uniform
distribu4on.

Priors Regularize

• think of a prior as a regularizer.

• is an uninforma)ve
prior. Here the prior adds one
heads and one tails to the
actual data, providing some
"towards-center" regulariza=on

• especially useful where in a few
tosses you got all heads, clearly
at odds with your beliefs.

• a prior would bias
you to more heads

Data overwhelms
prior eventually

Bayesian Upda,ng "on-line"

• can update prior to posterior all at once, or one by one

• as each piece of data comes in, you update the prior by mul6plying by
the one-point likelihood.

• the posterior you get becomes the prior for our next step

• the posterior predic-ve is the distribu-on of the next data point!

.

Bayesian Upda,ng of
globe

• no$ce how the posterior shi/s
le/ and right depending on
new data

At each step:

Posterior proper*es

• The probability that the amount
of water is less than 50%:
np.mean(samples < 0.5) =
0.173

• Credible Interval: amount of
probability mass.
np.percentile(samples,
[10, 90]) = [0.44604094,
0.81516349]

• np.mean(samples),
np.median(samples) =
(0.63787343440335842,
0.6473143052303143)

Point es)mates: MAP

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0])
mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

31 0.662578641304

OR Op%mize!

Point es)mates: mean

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

Mean is at 0.638.

This is Decision Theory.

Posterior predic,ve for globe tosses

Its a Beta-Binomial distribu2on.

Can use a sampling
distribu1on.

Underes'mates spread.

Sample instead.

Posterior predic,ve
from sampling

• draw the thetas from posterior

• then draw y's from the
sampling distribu7on

• and histogram it

• these are draws from joint

postpred = np.random.binomial(n,samples)

Replica(ve Posterior Predic(ve

, observed data:

Replicated Data: : data seen tomorrow if
experiment replicated with same model and value of
producing todays data .

 comes from posterior predic-ve. The idea is to
make as many replica-ons as the size of your dataset.

Another way to sample

ppc_rep=np.empty((dataset_size, num_samples))
for i in range(dataset_size):
 ppc_rep[i,:] = distrib.rvs(param=posterior_samples)

For each data point, sample using the
likelihood(sampling distribu7on) from samples of
the posterior. Gives an sized posterior predic7ve at
each "data point".

You can then slice the other way to get a dataset
sized posterior-predic6ve

Departure from usual
predic1ve sampling

Sample an en)re at each
from trace.

This allows to compute
distribu3ons from the posterior
predic3ve replica3ons for
informal test sta3s3cs.

These processes are called
Posterior Predic+ve Checks.

Replica(ve prior predic(ves are
also useful for callibra(on.

Normal-Normal Model

• fixed prior:

• non-fixed prior: Choose a func.onal form that is
mildly informa.ve, e.g., normal, half cauchy, half
normal. But NOT CONJUGATE. See Murphy

• prior: Mildly informa.ve normal with prior mean
and wide standard devia.on

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

Marginaliza)on

Marginal posterior:

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
 pd.Series(samps[20000::,0], name="μ"),
 pd.Series(samps[20000::,1], name="σ"),
 alpha=0.02)
 .plot_joint(
 sns.kdeplot,
 zorder=0, n_levels=6, alpha=1)

Marginals are just 1D
histograms

plt.hist(samps[20000::,0])

Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of assuming we
know ?

Prior for is

The conjugate of the normal is the normal itself.

Say we have the prior

posterior:

Here

Define

which is a weighted average of prior mean and
sampling mean.

The variance is

or be&er

 as increases, the data dominates the prior and the
posterior mean approaches the data mean, with the
posterior distribu3on narrowing...

The variance is

or be&er

 as increases, the data dominates the prior and the
posterior mean approaches the data mean, with the
posterior distribu3on narrowing...

Moth wing posterior

Y = [16.4, 17.0, 17.2, 17.4,
 18.2, 18.2, 18.2, 19.9, 20.8]
data mean is 18.1
#Data Quantities
sig = np.std(Y)
assume that is the value of KNOWN sigma
(in the likelihood)
mu_data = np.mean(Y)
n = len(Y)
Prior mean is 19.5
mu_prior = 19.5
prior std
tau = 10
plug in formulas
kappa = sig**2 / tau**2
sig_post =np.sqrt(1./(1./tau**2 + n/sig**2));
posterior mean
mu_post = kappa / (kappa + n) *mu_prior
 + n/(kappa+n)* mu_data
#samples
N = 15000
theta_prior = np.random.normal(loc=mu_prior,
 scale=tau, size=N);
theta_post = np.random.normal(loc=mu_post,
 scale=sig_post, size=N);

Sufficient Sta+s+cs and the exponen+al
family

Likelihood:

 is said to be a sufficient sta+s+c for

Poisson Gamma Example

The data consists of 155 women who were 40 years
old. We are interested in the birth rate of women with

a college degree and women without. We are told
that 111 women without college degrees have 217
children, while 44 women with college degrees have

66 children.

Let children for the women without
college degrees, and for women
with college degrees.

Exchangeability

Lets assume that the number of children of a women
in any one of these classes can me modelled as
coming from ONE birth rate.

The in-class likelihood for these women is invariant to
a permuta7on of variables.

This is really a statement about what is IID and what
is not.

It depends on how much knowledge you have...

Poisson likelihood

Posterior

, total number of children in each class of mom,
is sufficient sta+s+cs

Conjugate prior

Sampling distribu0on for :

Form is of . In shape-rate parametriza3on
(wikipedia)

Posterior:

Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance:

Posteriors

np.mean(theta1),
np.var(theta1) =
(1.9516881521791478,
0.018527204185785785)

np.mean(theta2),
np.var(theta2) =
(1.5037252100213609,
0.034220717257786061)

Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:

But see width:

np.mean(postpred1),
np.var(postpred1)=(1.976,
1.8554239999999997)

Posterior predic,ve smears out posterior error with
sampling distribu,on

Ok. We need Samples

• to compute expecta,ons, integrals and do
sta,s,cs, we need samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to
do integrals and expecta,ons

Inverse transform

algorithm

The CDF must be inver1ble!

1. get a uniform sample from

2. solve for yielding a new equa8on
where is the CDF of the distribu8on we desire.

3. repeat.

Why does it work?

 smallest x such that

What distribu,on does random variable
follow?

The CDF of y is . Since F is monotonic:

 is the CDF of y, thus is the pdf.

Example: exponen,al

pdf: for and

otherwise.

Solving for

code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
generate uniform samples in our range then invert the CDF
to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()

Rejec%on Sampling

• Generate samples from a uniform distribu3on with
support on the rectangle

• See how many fall below at a specific x.

Algorithm

1. Draw uniformly from

2. Draw uniformly from

3. if , accept the sample

4. otherwise reject it

5. repeat

example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
 # pick a uniform number on [xmin, xmax) (e.g. 0...10)
 x = np.random.uniform(xmin, xmax)
 # pick a uniform number on [0, ymax)
 y = np.random.uniform(0,ymax)
 # Do the accept/reject comparison
 if y < P(x):
 samples[accepted] = x
 accepted += 1

 count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000

problems

• determining the supremum may be costly

• the func6onal form may be complex for
comparison

• even if you find a 6ght bound for the supremum,
basic rejec6on sampling is very inefficient: low
acceptance probability

• infinite support

Variance
Reduc&on

Rejec%on on steroids

Introduce a proposal density
.

• is easy to sample from
and (calculate the pdf)

• Some exists so that
 in your en8re

domain of interest

• ideally will be somewhat
close to

• op8mal value for M is the
supremum over your domain

Algorithm

1. Draw from your proposal
distribu4on

2. Draw uniformly from [0,1]

3. if , accept the
sample

4. otherwise reject it

5. repeat

Example

p = lambda x: np.exp(-x) # our distribution
g = lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

 # Sample from g using inverse sampling
 u = np.random.uniform(umin, umax)
 xproposal = np.exp(u) - 1

 # pick a uniform number on [0, 1)
 y = np.random.uniform(0,1)

 # Do the accept/reject comparison
 if y < p(xproposal)/g(xproposal):
 samples[accepted] = xproposal
 accepted += 1

 count +=1

print("Count", count, "Accepted", accepted)
get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000

Importance sampling

The basic idea behind importance sampling is that we
want to draw more samples where , a func7on
whose integral or expecta7on we desire, is large. In
the case we are doing an expecta7on, it would indeed
be even be<er to draw more samples where
is large, where is the pdf we are calcula7ng the
integral with respect to.

Unlike rejec+on sampling we use all samples!!

Choosing a proposal distribu1on
:

If :

