
Lecture 8

Bayesian Stats and Sampling



Today:

• Bayesian Stats recap

• replica0ve posterior predic0ves

• Normal-normal Model

• exponen0al model

• Inverse Transform Sampling

• Rejec0on Sampling



Last Time

• Entropy

• Maximum Likelihood and Entropy

• Bayesian Stats



Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters  are stochas3c random variables

• associate the parameter  with a prior distribu3on 

• The prior distribu3on generally represents our belief on 
the parameter values when we have not observed any 
data yet ( to be qualified later)

• obtain posterior distribu3ons

• predic3ve distribu3on from the posterior



Basic Idea

Get the joint Probability distribu3on

Now we condi*on on some random variables and 
learn the values of others.



Rules

1.

2.

 is called the marginal distribu.on of A, 
obtained by summing or marginalizing over .



Posterior

Posterior: 

Evidence: 



Marginaliza)on

Marginal posterior: 

Posterior Predic+ve: 

.



Basic Graph



Predic'ves

The distribu,on of a future data point :

Posterior predic,ve: 

.

The distribu,on of a data point  from the prior:

Prior predic*ve: 



Globe Toss Model

• Seal tosses globe,  is true water frac3on

• data WLWWWLWLW

• Modeled using the Binomial Distribu3on, which is 
the distribu3on of a set of Bernoulli random 
variables.



Griddy Posterior

prior_pdf = lambda p: 1
like_pdf = lambda p: binom.pmf(k=6, n=9, p=p)
post_pdf = lambda p: like_pdf(p)*prior_pdf(p)
p_grid = np.linspace(0., 1., 1000)
post_vals = post_pdf(p_grid)
post_vals_normed = post_vals/np.sum(post_vals)
grid_post_samples = np.random.choice(p_grid, size=10000, replace=True, p=post_vals_normed)

• create a grid, evaluate posterior on it

• discrete-normalize this posterior to get 
probabili8es

• sample the grid according to these probabili8es



Laplace Approxima.on for 

Unnormalized posterior: 

Let  then we get un-normalized Gaussian:

, 

whose normaliza.on (  we then use to approximate the 

normaliza.on of  .



Griddy and Laplace, together



Conjugate Prior

• A conjugate prior is one which, when mul0plied 
with an appropriate likelihood, gives a posterior 
with the same func0onal form as the prior.

• Likelihoods in the exponen0al family have 
conjugate priors in the same family

• analy0cal tractability AND interpretability



• The Beta distribu/on is conjugate to the Binomial 
distribu/on

Because of the conjugacy, this turns out to be:

 

• a  prior is equivalent to a uniform 
distribu4on.



Priors Regularize

• think of a prior as a regularizer.

•  is an uninforma)ve 
prior. Here the prior adds one 
heads and one tails to the 
actual data, providing some 
"towards-center" regulariza=on

• especially useful where in a few 
tosses you got all heads, clearly 
at odds with your beliefs.

• a  prior would bias 
you to more heads



Data overwhelms 
prior eventually



Bayesian Upda,ng "on-line"

• can update prior to posterior all at once, or one by one

• as each piece of data comes in, you update the prior by mul6plying by 
the one-point likelihood.

• the posterior you get becomes the prior for our next step

• the posterior predic-ve is the distribu-on of the next data point!

.



Bayesian Upda,ng of 
globe

• no$ce how the posterior shi/s 
le/ and right depending on 
new data

At each step:



Posterior proper*es

• The probability that the amount 
of water is less than 50%: 
np.mean(samples < 0.5) = 
0.173

• Credible Interval: amount of 
probability mass. 
np.percentile(samples, 
[10, 90]) = [ 0.44604094,  
0.81516349]

• np.mean(samples), 
np.median(samples) = 
(0.63787343440335842, 
0.6473143052303143)



Point es)mates: MAP

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0])
mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

31 0.662578641304

OR Op%mize!



Point es)mates: mean

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

Mean is at 0.638.

This is Decision Theory.



Posterior predic,ve for globe tosses

Its a Beta-Binomial distribu2on.

Can use  a sampling 
distribu1on.

Underes'mates spread.

Sample instead.





Posterior predic,ve 
from sampling

• draw the thetas from posterior

• then draw y's from the 
sampling distribu7on

• and histogram it

• these are draws from joint 

postpred = np.random.binomial(n,samples)



Replica(ve Posterior Predic(ve

, observed data: 

Replicated Data: : data seen tomorrow if 
experiment replicated with same model and value of  
producing todays data .

 comes from posterior predic-ve. The idea is to 
make as many replica-ons as the size of your dataset.



Another way to sample

ppc_rep=np.empty((dataset_size, num_samples))
for i in range(dataset_size):
    ppc_rep[i,:] = distrib.rvs(param=posterior_samples)

For each data point, sample using the 
likelihood(sampling distribu7on) from  samples of 
the posterior. Gives an  sized posterior predic7ve at 
each "data point".

You can then slice the other way to get a dataset 
sized posterior-predic6ve





Departure from usual 
predic1ve sampling

Sample an en)re  at each  
from trace.

This allows to compute 
distribu3ons from the posterior 
predic3ve replica3ons for 
informal test sta3s3cs.

These processes are called 
Posterior Predic+ve Checks.

Replica(ve prior predic(ves are 
also useful for callibra(on.



Normal-Normal Model

• fixed  prior: 

• non-fixed  prior: Choose a func.onal form that is 
mildly informa.ve, e.g., normal, half cauchy, half 
normal. But NOT CONJUGATE. See Murphy

•  prior: Mildly informa.ve normal with prior mean 
and wide standard devia.on

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf


Marginaliza)on

Marginal posterior: 

samps[20000::,:].shape #(10001, 2)

sns.jointplot(
    pd.Series(samps[20000::,0], name="$\mu$"),
    pd.Series(samps[20000::,1], name="$\sigma$"),
    alpha=0.02)
    .plot_joint(
        sns.kdeplot,
    zorder=0, n_levels=6, alpha=1)

Marginals are just 1D 
histograms

plt.hist(samps[20000::,0])



Normal-Normal Model

Posterior for a gaussian likelihood:

What is the posterior of  assuming we
know ?

Prior for  is 



The conjugate of the normal is the normal itself.

Say we have the prior

posterior: 



Here

Define 

which is a weighted average of prior mean and 
sampling mean.



The variance is

or be&er

 as  increases, the data dominates the prior and the 
posterior mean approaches the data mean, with the 
posterior distribu3on narrowing...



The variance is

or be&er

 as  increases, the data dominates the prior and the 
posterior mean approaches the data mean, with the 
posterior distribu3on narrowing...



Moth wing posterior

Y = [16.4, 17.0, 17.2, 17.4, 
    18.2, 18.2, 18.2, 19.9, 20.8]
# data mean is 18.1
#Data Quantities
sig = np.std(Y) 
# assume that is the value of KNOWN sigma 
# (in the likelihood)
mu_data = np.mean(Y)
n = len(Y)
# Prior mean is 19.5
mu_prior = 19.5
# prior std
tau = 10
# plug in formulas
kappa = sig**2 / tau**2
sig_post =np.sqrt(1./( 1./tau**2 + n/sig**2));
# posterior mean
mu_post = kappa / (kappa + n) *mu_prior 
    + n/(kappa+n)* mu_data
#samples
N = 15000
theta_prior = np.random.normal(loc=mu_prior, 
    scale=tau, size=N);
theta_post = np.random.normal(loc=mu_post, 
    scale=sig_post, size=N);



Sufficient Sta+s+cs and the exponen+al 
family

Likelihood: 

 is said to be a sufficient sta+s+c for 



Poisson Gamma Example

The data consists of 155 women who were 40 years 
old. We are interested in the birth rate of women with 

a college degree and women without. We are told 
that 111 women without college degrees have 217 
children, while 44 women with college degrees have 

66 children.

Let  children for the  women without 
college degrees, and  for  women 
with college degrees.



Exchangeability

Lets assume that the number of children of a women 
in any one of these classes can me modelled as 
coming from ONE birth rate.

The in-class likelihood for these women is invariant to 
a permuta7on of variables.

This is really a statement about what is IID and what 
is not.

It depends on how much knowledge you have...



Poisson likelihood



Posterior

 

, total number of children in each class of mom, 
is sufficient sta+s+cs



Conjugate prior

Sampling distribu0on for : 

Form is of . In shape-rate parametriza3on 
(wikipedia)

Posterior: 



Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance: 



Posteriors

np.mean(theta1), 
np.var(theta1) = 
(1.9516881521791478, 
0.018527204185785785)

np.mean(theta2), 
np.var(theta2) = 
(1.5037252100213609, 
0.034220717257786061)



Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:



But see width:

np.mean(postpred1), 
np.var(postpred1)=(1.976, 
1.8554239999999997)

Posterior predic,ve smears out posterior error with 
sampling distribu,on



Ok. We need Samples

• to compute expecta,ons, integrals and do 
sta,s,cs, we need samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to 
do integrals and expecta,ons



Inverse transform



algorithm

The CDF  must be inver1ble!

1. get a uniform sample  from 

2. solve for  yielding a new equa8on  
where  is the CDF of the distribu8on we desire.

3. repeat.



Why does it work?

 smallest x such that 

What distribu,on does random variable  
follow?

The CDF of y is . Since F is monotonic:

 is the CDF of y, thus  is the pdf.



Example: exponen,al

pdf:  for  and  

otherwise.

Solving for 



code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()





Rejec%on Sampling

• Generate samples from a uniform distribu3on with 
support on the rectangle

• See how many fall below  at a specific x.



Algorithm

1. Draw  uniformly from 

2. Draw  uniformly from 

3. if , accept the sample

4. otherwise reject it

5. repeat



example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
    # pick a uniform number on [xmin, xmax) (e.g. 0...10)
    x = np.random.uniform(xmin, xmax)
    # pick a uniform number on [0, ymax)
    y = np.random.uniform(0,ymax)
    # Do the accept/reject comparison
    if y < P(x):
        samples[accepted] = x
        accepted += 1

    count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000



problems

• determining the supremum may be costly

• the func6onal form may be complex for 
comparison

• even if you find a 6ght bound for the supremum, 
basic rejec6on sampling is very inefficient: low 
acceptance probability

• infinite support



Variance
Reduc&on



Rejec%on on steroids

Introduce a proposal density 
.

•  is easy to sample from 
and (calculate the pdf)

• Some  exists so that 
 in your en8re 

domain of interest

• ideally  will be somewhat 
close to 

• op8mal value for M is the 
supremum over your domain 



Algorithm

1. Draw  from your proposal 
distribu4on 

2. Draw  uniformly from [0,1]

3. if , accept the 
sample

4. otherwise reject it

5. repeat



Example

p = lambda x: np.exp(-x)  # our distribution
g = lambda x: 1/(x+1)  # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
# range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

    # Sample from g using inverse sampling
    u = np.random.uniform(umin, umax)
    xproposal = np.exp(u) - 1

    # pick a uniform number on [0, 1)
    y = np.random.uniform(0,1)

    # Do the accept/reject comparison
    if y < p(xproposal)/g(xproposal):
        samples[accepted] = xproposal
        accepted += 1

    count +=1

print("Count", count, "Accepted", accepted)
# get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000



Importance sampling

The basic idea behind importance sampling is that we 
want to draw more samples where , a func7on 
whose integral or expecta7on we desire, is large. In 
the case we are doing an expecta7on, it would indeed 
be even be<er to draw more samples where  
is large, where  is the pdf we are calcula7ng the 
integral with respect to.

Unlike rejec+on sampling we use all samples!!



Choosing a proposal distribu1on 
:

If :


