Lecture 8

Bayesian Stats and Sampling

@AM 207

Today:

e Bayesian Stats recap

e replicative posterior predictives
e Normal-normal Model

e exponential model

e |nverse Transform Sampling

e Rejection Sampling

@AM 207

Last Time

e Entropy
e Maximum Likelihood and Entropy

e Bayesian Stats

@AM 207

Bayesian Stats

e assume sample IS the data, no stochasticity
e parameters 6 are stochastic random variables

e associate the parameter 6 with a prior distribution p(6)

 The prior distribution generally represents our belief on
the parameter values when we have not observed any
data yet (to be qualified later)

e obtain posterior distributions

e predictive distribution from the posterior

@AM 207

Basic ldea

Get the joint Probability distribution

”~

P(weapon,murderer) P(murderer) P(weapon|murderer)

Now we condition on some random variables and
learn the values of others.

@AM 207

Rules
1. P(A,B) = P(A | B)P(B)
2.P(A)=) P(A,B)=)» P(A|B)P(B)

P(A) is called the marginal distribution of A,
obtained by summing or marginalizing over B.

@AM 207

Posterior

p(D|0) p()

p(0|D = {y}) = 2(D)

Posterior: p(6|D) «x p(D|0) p(6)

Evidence:

p(D = {y}) = / d6p(6, D) — / 46 p(D|6)p(8).

@AM 207

Marginalization

Marginal posterior: p(6,|D) = /dﬂ_lp(H\D).

Posterior Predictive:

p(y*|D = {y}) = / dop(y*,0/{y}).

@AM 207

Basic Graph

p(0,y,y") = p(0)p(y|0)p(y*|0)
= p(0|y)p(y)p(y"|0)
p(y*) = / 46p(6, 4" |y)

_ /dep(y Y, 0)

p(y)

p(y"|y) = / 46 p(8])p(y"|0)

@AM 207

Predictives

The distribution of a future data point y*:

Posterior predictive:

p(y|D = {y}) = / d6p(y*19)p(6] {w})

The distribution of a data point y from the prior:

Prior predictive:

p(y) = / d0p(0,y) = / 46 p(410)p(6).

@AM 207

Globe Toss Model

e Seal tosses globe, p is true water fraction

e data WLWWWLWLW

e Modeled using the Binomial Distribution, which is
the distribution of a set of Bernoulli random
variables.

@AM 207

Griddy Posterior

prior pdf = lambda p: 1

like pdf = lambda p: binom.pmf(k=6, n=9, p=p)

post _pdf = lambda p: like pdf(p)*prior_pdf(p)

p_grid = np.linspace(0., 1., 1000)

post _vals = post pdf(p_grid)

post _vals normed = post vals/np.sum(post _vals)

grid post_samples = np.random.choice(p_grid, size=10000, replace=True, p=post _vals normed)

e create a grid, evaluate posterior on it

e discrete-normalize this posterior to get
probabilities

e sample the grid according to these probabilities

@AM 207

Laplace Approximation for p*

Unnormalized posterior:

1 d?

Z(0 = Oyap)? [logp* (9|:13)]

2

log p* (0|z) = log p* (Orrap|T) 462

0=0nrrap

d2

Let ¢ = _[d02

logp* (0|x)]s—s,,,, then we get un-normalized Gaussian:

¢*(9) = p* (Barap)e” § O Omar)”,

L 2
whose normalization (p™ (6a74p) 4/ 7T) we then use to approximate the
c

normalization of p* .

@AM 207

Griddy and Laplace, together

/\

/

\

AN
\

 AM 207

20
15
10 /
05 —/
00

0 04

Conjugate Prior

e A conjugate prior is one which, when multiplied
with an appropriate likelihood, gives a posterior
with the same functional form as the prior.

e Likelihoods in the exponential family have
conjugate priors in the same family

e analytical tractability AND interpretability

@AM 207

e The Beta distribution is conjugate to the Binomial
distribution

p(ply) o p(y|p)P(p) = Binom(n,y,p) X Beta(a, B)

Because of the conjugacy, this turns out to be:
Beta(y + a,n — y +)

* a Beta(1,1) prioris equivalent to a uniform
distribution.

@AM 207

Priors Regularize

think of a prior as a regularizer.

Bata(1,1) is an uninformative

prior. Here the prior adds one
heads and one tails to the
actual data, providing some
"towards-center" regularization

especially useful where in a few
tosses you got all heads, clearly
at odds with your beliefs.

a Beta(2,1) prior would bias
you to more heads

@AM 207

2.00

1.75

1.50

1.256

1.00

0.75

0.50

0.25

0.00

—— Beta(1.1)
—— Beta@)
— ta(1,2)
Beta(2,2)
>< -
0.2 04 0.6 0.8 1.0

Data overwhelms
prior eventually

@AM 207

O AN WwHodN® O aN WO ® O aNWsE OO N ®

Qa2 NWdsE O ~N® O 2N WHEOO N ®

=

=]

N=0
== posterior with flat prior
w—— nosterior with biased prior

4
00 02 04 06 08 1.0
: N=4
| = nosterior with flat prior
| = posterior with biased prior
|
|
|
|
L
00 02 04 06 o8 1.0
: N=8
| == posterior with flat prior
| e posterior with biased prior
|
|
\
00 02 04 06 oe 1.0
: N=32
| = posterior with flat prior
| = posterior with biased prior
|
|
1
00 02 04 06 08 1.0
: N=64
| = posterior with flat prior
| w—— posterior with biased prior
|
|
|
1
00 02 04 06 o8 1.0
N=128
| = posterior with flat prior
= nosterior with biased prior
|
|
1
00 02 04 06 o8 1.0
N=500
== posterior with flat prior
— nosterior with biased prior
1
I
|
1
00 02 04 06 08 1.0

Bayesian Updating "on-line"

e can update prior to posterior all at once, or one by one

e as each piece of data comes in, you update the prior by multiplying by
the one-point likelihood.

e the posterior you get becomes the prior for our next step

p(0 | {y1, -, Ynt1}) x D{Yns1} | 0) x (0 | {y1,---,Un})

e the posterior predictive is the distribution of the next data point!

P(Unr1{y1s - U }) = Epofy,,..s) [P(Unt1160)] = / d0 p(yn+1|0)P(O{y1s- - Yn})

@AM 207

20
. Water
15 —— prior for this step
10 = posterior for this step
05
0o
00 02 04 06 08 1.0
20 —
___——N=1, Land
s —_— —— prior for this step
10 = posterior for this step
05
00
00 02 04 06 08 1.0
18
e e N=2, Water
1 ; ____,-—-"'_-‘_’- ~ prior for this step
10 = jor for this step

00 02 04 06 o8 1.0

N=3, Water
prior for this step
magr for this step

~—N=5, Land
—— pnior forthis step

00 02 04 06 o8 1.0

N=6, Water
—— pnior for this step
posterior for this step

00 02 04 06 o8 1.0

N=7, Land
~ —— prior for this step
Twm nosterior for this step

0o 02 04 06 oe 1.0

N=8, Water
—— pnior for this step
- posterior for this step

0o 02 04 06 oe 1.0

@AM 207

Bayesian Updating of
globe

 notice how the posterior shifts
left and right depending on
new data

At each step:

Beta(y+ a,n —y+

30

25

20

15

1.0

05

00

00

@AM 207

1.2

Posterior properties

 The probability that the amount

of water is less than 50%:
np.mean(samples < 0.5) =
0.173

Credible Interval: amount of
probability mass.
np.percentile(samples,
[10, 90]) = [0.44604094,
0.81516349]

np.mean(samples),
np.median(samples) =
(0.637/87343440555842,
0.64731430523031453)

Point estimates: MAP

Oriap = arg max p(6]D)

L p(0)

p(D)

= arg max L p(6)

— arg max
6

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0@])
mapvalue = sampleshisto[1l][maxcountindex]
print(maxcountindex, mapvalue)

31 0.66257/8641304
OR Optimize!

@AM 207

Point estimates: mean

R(t) = Eyn) [0~ 8] = [a0(6 — tp(6ID)

dR(t)

- =0 = / p(6|D)

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

Mean is at 0.638.

This is Decision Theory.

@AM 207

045

040

035

0.30

025

020

015

010

0.05

0.00

0.0

02

04

06

08

1.0

Posterior predictive for globe tosses

p(y*|D) = / dop(y*|0)p(6|D)

Its a Beta-Binomial distribution.

Can use p(y*|D) = p(y" |0y ap) @ sampling
distribution.

Underestimates spread.

Sample instead.

@AM 207

Posterior probability

0

Sampling distributions

J

probabilit

of water

0.1 0.2 | 0.3
|‘|| |‘||‘Io

0

4
..

0.5

0.6
m

Posterior predictive

distribution

@AM 207

.

0

3 6 9

number of water samples

0.7
.l|‘||||

Posterior predictive
from sampling

draw the thetas from posterior

then draw y's from the
sampling distribution

and histogram it

these are draws from joint y, 6

postpred = np.random.binomial(n,samples)

@AM 207

1500

1000

Posterior predictive

[| predictive
plug-in (MAP)

10

Replicative Posterior Predictive

p(1y*}) = /p({y*}|0)p(9|1))d0, observed data:
D = {y}

Replicated Data: {y, }: data seen tomorrow if

experiment replicated with same model and value of 6
producing todays data {y}.

{y, } comes from posterior predictive. The idea is to
make as many replications as the size of your dataset.

@AM 207

Another way to sample

ppc_rep=np.empty((dataset size, num_samples))
for 1 in range(dataset _size):
ppc_rep[1i,:] = distrib.rvs(param=posterior_ samples)

For each data point, sample using the
likelihood(sampling distribution) from S samples of
the posterior. Gives an S sized posterior predictive at

each "data point".

You can then slice the other way to get a dataset
sized posterior-predictive

@AM 207

Departure from usual
predictive sampling

Sample an entire {y, } at each ¢
from trace.

This allows to compute
distributions from the posterior
predictive replications for
informal test statistics.

These processes are called
Posterior Predictive Checks.

Replicative prior predictives are
also useful for callibration.

@AM 207

-50

-40

-30

-20

10

Normal-Normal Model

p(u,0%) = p(plo®)p(c®)
e fixed o prior: p(O’z) — 5(0'2 _ 0(2))

 non-fixed ¢ prior: Choose a functional form that is

mildly informative, e.g., normal, half cauchy, half
normal. But NOT CONJUGATE. See Murphy

e prior: Mildly informative normal with prior mean
and wide standard deviation

@AM 207

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

Marginalization

Marginal posterior: | |

p(e]_ |.D) — /de_]_p(9|_D), pearsonr = -0.0047: p = 0.64

30

samps[20000: :, :].shape #(10001, 2)

25

sns.jointplot(

pd.Series(samps[20000::,0], name="μ"),

pd.Series(samps[20000::,1], name="σ"), b 20

alpha=0.02)

.plot_joint(

sns.kdeplot,

zorder=0, n_levels=6, alpha=1) 15
Marginals are just 1D 10
histograms

16 17 18 19 20

plt.hist(samps[20000::,0]) H

@AM 207

Normal-Normal Model

Posterior for a gaussian likelihood:

1
p(,u,az\yl,...,yn,az)oc \/27_‘_0_ e 22 X (“702)

What is the posterior of 4 assuming we

know o2?

Prior for 0% is p(0?) = §(0* — o2)

@AM 207

—= Z(Z‘/z'_.“)z
p(“‘y].? K 7yn70'2 — 0'(2)) X p(,u‘o'z — 0'(2)) e 2%

The conjugate of the normal is the normal itself.

Say we have the prior

plulo?) = expd 55 (- ? |

posterior: p(ulyi, ..., Yn,0%) exp{—%(u - b/a)z}

@AM 207

2 2 ! 2
T o T o
Define k = 0% /72
b K n

'up:E:m—l—n'u' K-+n

which is a weighted average of prior mean and
sampling mean.

@AM 207

The variance is

N 1
’7' p—
P 1/7% + n/o?
or better
1 B 1 n
T2 2 g2

as n increases, the data dominates the prior and the
posterior mean approaches the data mean, with the
posterior distribution narrowing...

@AM 207

The variance is

N 1
’7' p—
P 1/7% + n/o?
or better
1 B 1 n
T2 2 g2

as n increases, the data dominates the prior and the
posterior mean approaches the data mean, with the
posterior distribution narrowing...

@AM 207

Moth wing posterior

Y = [16.4, 17.0, 17.2, 17.4,
18.2, 18.2, 18.2, 19.9, 20.8]

data mean is 18.1

#Data Quantities

sig = np.std(Y)

assume that is the value of KNOWN sigma

(in the likelihood)

mu_data = np.mean(Y)

n = len(Y)

Prior mean is 19.5

mu_prior = 19.5

prior std

tau = 10

plug in formulas

kappa = sig**2 / tau**2

sig post =np.sqrt(l./(1./tau**2 + n/sig**2));

posterior mean

mu_post = kappa / (kappa + n) *mu_prior
+ n/(kappa+n)* mu_data

#samples

N = 15000

theta_prior = np.random.normal(loc=mu_prior,
scale=tau, size=N);

theta_post = np.random.normal(loc=mu_post,
scale=sig post, size=N);

@AM 207

Number of samples

1800

1600

1400

1200

1000

800

600

400

200

10

15

2
wing length (mm)

B posterior
prior

Sufficient Statistics and the exponential
family

Likelihood:

p(y|0) = (Hf Yi))" exp (¢(9) |

] 3
el
=
~~
$
—
N—

n
Z u(y;) is said to be a sufficient statistic for ¢
i=1

@AM 207

Poisson Gamma Example

The data consists of 155 women who were 40 years
old. We are interested in the birth rate of women with
a college degree and women without. We are told
that 111 women without college degrees have 217
children, while 44 women with college degrees have

66 children.
Let Y7 4,...,Y,, 1 children for the n; women without
college degrees, and Y7 5, ...,Y,, 2 for n, women

with college degrees.

@AM 207

Exchangeability

Lets assume that the number of children of a women
In any one of these classes can me modelled as
coming from ONE birth rate.

The in-class likelihood for these women is invariant to
a permutation of variables.

This is really a statement about what is [ID and what
IS not.

It depends on how much knowledge you have...

@AM 207

Poisson likelihood

Y1 ~ Poisson(6:),Y;2 ~ Poisson(6,)

7 1 Yii —
p(Y11,...,Yn,1/01) HP HY ,9 e

= c(Yi1,..., Y1) (n16y)2=Yre ™% ~ Poisson(n,6;)

Yia,..., Y, 2|02 ~ Poisson(nz205)

@AM 207

Posterior

Cl(n17y17°°°7yn1) (fn’lel)z:YZl i (61)
X ca(N2,Y1s- - Yny) (77126’2)216’2 e "% p(62)

Z Y., total number of children in each class of mom,

is sufficient statistics

@AM 207

Conjugate prior

Sampling distribution for 8: p(Y1, ..., y,|0) ~ =Yie™

Form is of Gamma. In shape-rate parametrization
(wikipedia)

_ _ b® a—1 _—b0
p(#) = Gamma(6d,a,b) = ') 0 e

Posterior:
p(8|Y1,...,Y,) xp(Y1,...,v.|0)p(6) ~ Gamma(6,a + ZYi,b +n)

@AM 207

30

25

20

1.5

1.0

05

00

= 3 kids 1 mom
=== 2 kids 1 mom
= 1kid 1 mom
== 1 kids 3 moms

@AM 207

Priors and Posteriors
We choose 2,1 as our prior.
(01 |n, Zl Y1) ~ Gamma(6,, 219, 112)
p(02 |ns, Z Y:2) ~ Gamma(6,, 68,45)

Prior mean, variance:
E[0] = a/b,var[f] = a/b.

Posteriors

El6] = (a+) u)/(b+N)

varlf] = (a+ Y u:)/(b+ V)2,

np.mean(thetal),
np.var(thetal) =
(1.9516881521791478,
0.01852/7204185785/785)

np.mean(thetal),
np.var(thetal) =
(1.5037252100213609,
0.034220717257786061)

@AM 207

35

30

25

20

1.5

1.0

05

ostenor for theta1
ostenior for theta2

3 3

posterior for theta1 with 20,2

150

100

&AM 207

Posterior Predictives

p(y°| D) = / d6p(y*19)p(6| D)

Sampling makes it easy:

poisson.rvs(thetal)
poisson.rvs(thetal)

postpredl
postpred?2

Negative Binomial:
* a + Yi
S DEL

G+)
SN CRD)
varly*| = b+ N’ (N+b+1).

But see width:

np.mean(postpredl),
np.var(postpredl)=(1.9/6,
1.8554259999999997/)

Posterior predictive smears out posterior error with
sampling distribution

@AM 207

Ok. We need Samples

e to compute expectations, integrals and do
statistics, we need samples

e we start that journey today
e |nverse transform
e rejection sampling

e importance sampling: a direct, low-variance way to
do integrals and expectations

@AM 207

Inverse transform

e
o
1

f(x)
C =4 N WA OO N ® ©
—t—t—t—t+—+—+—+—

@AM 207

algorithm

The CDF F' must be invertible!
1. get a uniform sample u from Uni f(0, 1)

2. solve for z yielding a new equation z = F~1 (u)
where F'is the CDF of the distribution we desire.

3. repeat.

@AM 207

Why does it work?

F~1(u) = smallest x such that F(z) >=u

What distribution does random variable y = F~* (u)
follow?

The CDF of y is p(y <=). Since F is monotonic:
ply <=z) =p(F(y) <= F(z)) = p(u <= F(z)) = F(z)
F'is the CDF of y, thus f is the pdf.

@AM 207

Example: exponential

pdf: f(z) = ;e—-”/’/A forz > 0and f(x) =0

otherwise.
/a3 | 2/
U = —e dr' =1 —e€
0 A

Solving for z

@AM 207

code

p = lambda x: np.exp(-x)

CDF = lambda x: 1-np.exp(-x)

invCDF = lambda r: -np.log(l-r) # invert the CDF

xmin = @ # the lower limit of our domain

xmax = 6 # the upper limit of our domain

rmin CDF(xmin)

rmax CDF(xmax)

N = 10000

generate uniform samples in our range then invert the CDF
to get samples of our target distribution
np.random.uniform(rmin, rmax, N)

invCDF(R)

hinfo = np.histogram(X, 100)

plt.hist(X,bins=100, label=u'Samples');

plot our (normalized) function

xvals=np. linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][@]*p(xvals), 'r', label=u'p(x)')
plt.legend()

X 0 #H H
Il

@AM 207

600

300

400

300

200

100

p(x)
Bl Samples

@AM 207

Rejection Sampling

e Generate samples from a uniform distribution with
support on the rectangle

* See how many fall below y(x) at a specific x.

@AM 207

Algorithm

1. Draw z uniformly from

Lmin xmam]

2. Draw y uniformly from
0, Ymaz]

3.ify < f(x), accept the sample
4. otherwise reject it

5. repeat

@AM 207

ymax

example

P = lambda x: np.exp(-x)

xmin = @ # the lower limit of our domain

Xmax 10 # the upper limit of our domain

ymax 1

#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = @ # the number of accepted samples
samples = np.zeros(N)

count = @ # the total count of proposals

while (accepted < N):

pick a uniform number on [xmin, xmax) (e.g. O..

X = np.random.uniform(xmin, xmax)
pick a uniform number on [0, ymax)
y = np.random.uniform(@,ymax)
Do the accept/reject comparison
if y < P(x):

samples[accepted] = X

accepted += 1

count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples, 30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np. linspace(xmin, xmax, 1000)

.10)

plt.plot(xvals, hinfo[@][@]*P(xvals), 'r', label=u'P(x)')

plt.legend()

Count 100294 Accepted 10000

@AM 207

3000

2500

2000

1500

1000

500

P(x)
Bl Samples

10

problems

e determining the supremum may be costly

e the functional form may be complex for
comparison

e even if you find a tight bound for the supremum,
basic rejection sampling is very inefficient: low
acceptance probability

e Infinite support

@AM 207

Variance
Reduction

Rejection on steroids

Introduce a proposal density
g(z).

—
o
1

e g(x) is easy to sample from
and (calculate the pdf)

e Some M exists so that
M g(z) > f(z) in your entire
domain of interest

Y Axis
C = N WA OO N ® ©
A T R pm—

* ideally g(x) will be somewhat
closeto f X

e optimal value for M is the
supremum over your domain

@AM 207

Algorithm

1. Draw z from your proposal
distribution g(x)

—
o
1

2. Draw gy uniformly from [O,1]

3.ify < f(x)/M g(x), accept the
sample

4. otherwise reject it

Y Axis
C = N WA OO N @ ©
A T R pm—

5. repeat

@AM 207

Example

p = lambda x: np.exp(-x) # our distribution

g = lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = @ # the lower limit of our domain

xmax = 10 # the upper limit of our domain

range limits for inverse sampling

umin = invCDFg(xmin)

umax = invCDFg(xmax)

N = 10000 # the total of samples we wish to generate

accepted = @ # the number of accepted samples

samples = np.zeros(N)

count = @ # the total count of proposals

while (accepted < N):

Sample from g using inverse sampling
u = np.random.uniform(umin, umax)
xproposal = np.exp(u) - 1

pick a uniform number on [0, 1)
y = np.random.uniform(9,1)

Do the accept/reject comparison

if y < p(xproposal)/g(xproposal):
samples[accepted] = xproposal
accepted += 1

count +=1

print("Count", count, "Accepted", accepted)

get the histogram info

hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[@][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000

@AM 207

1600

1400

1200

1000

800

600

400

200

p(x)
alx)
Bl Samples

10

Importance sampling

The basic idea behind importance sampling is that we
want to draw more samples where h(x), a function

whose integral or expectation we desire, is large. In
the case we are doing an expectation, it would indeed
be even better to draw more samples where h(z) f(x)

is large, where f(x) is the pdf we are calculating the
integral with respect to.

Unlike rejection sampling we use all samples!!

@AM 207

Byt = | f@h@)dz

Choosing a proposal distribution
g(z):

B = [h@g(e)Z 3V
By[h] = Jim + ;)h(wz>§§jj§

@AM 207

thick tafl

many samples, small weights

