Lecture /

From Information Theory to
Bayesian Stats
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Last Time:

e The Learning process
e Risk and Bayes Risk
e The KL Divergence and Deviance

e |n-sample penalties: the AIC
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Today

e Entropy
e Maximum Likelihood and Entropy
e Bayesian Stats

e Exponential Family
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HW submissions

e are having too much entropy, SO

e put care into your submission, its a real-world document
and must be well organized and neat.

e Dont leave stray code around document. Cite sources.

e use jupyter notebooks only. Not Colab, not additional
python files.

e One notebook per submission please!

e |earn how to use markdown and latex-in-markdown well.
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Submission format

e only one per group
e all names in group clearly at top of the document

e Name notebook thus: AM207 HWx.ipynb

e Submit via a canvas group. Create a group in the
people section. Then when one person submits
you're all notified

e Please follow, or TFs will start penalizing
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KL-Divergence

Dk (p,q) = Ep[log(p) — log(q)] = Ep[log(p/q)]
= sz-log(%) or /dPlog(E)

q

Dgkr,(p,p) =0

KL divergence measures distance/dissimilarity of the
two distributions p(x) and g(z). Its >= 0.
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Divergence:
The additional uncertainty
induced by using probabilities
from one distribution to

describe another distribution
- McElreath page 179
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MARS ATTACKS (Topps, 1962; Burton 1996)

Earth : ¢ = {0.7,0.3}, Mars : p = {0.01,0.99}.

Earth to predict Mars, less surprise on landing: Dk, (p,q) = 1.14, Dk 1. (g, p) = 2.62..
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PROBLEM: we dont know distribution p. If
we did, why do inference?

SOLUTION: Use the empirical distribution

That is, approximate population expectations
by sample averages.

—> Dkr(p,q) = Ep|log(p/q)| = Z log(pi/a:)
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Maximum Likelihood justification

1

D1 (p,q) = Epllog(p/9)] = = ) _(log(p:) — log(a:)

Minimizing KL-divergence — maximizing

Z log(q;)

Which is exactly the log likelihood! MLE!
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Information and Uncertainty

e coin at 50% odds has maximal uncertainty

e reflects my lack of knowledge of the physics

e many ways for 50% heads.

e an election with p = 0.99 has a lot of Information

information is the reduction in uncertainty from learning
an outcome
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Information Entropy, a measure of
uncertainty

Desiderata:
- must be continuous so that there are no jumps

- must be additive across events or states, and must
increase as the number of events/states increases

H(p) = — E, [log(p)] = — / p(e)og(p(z))dz OR — 3 pilog(p)
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Entropy for coin fairness

H(p) = —Ey[log(p)] = —p * log(p) — (1 — p) * log(1 — p)
def h(p):
if p==1.:
ent = 0
elif p==0.:
ent = 0
else:
ent = - (p*math.log(p) + (1-p)* math.log(l-p))

0.3

0.2

0.1

0.0
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Maximum Entropy (MAXENT)

e finding distributions consistent with constraints
and the current state of our information

 what would be the least surprising distribution?
e The one with the least additional assumptions?

The distribution that can happen in the most ways is
the one with the highest entropy
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For a gaussian

1
p(z) = T

o~ (z—h)" /207

H(p) = Eyllog(p)] = E, |~ 5 log(2m0”) — (z — u)? /20°]

1 1 1 1 1
— ——l 2 . — —E — . _ — — : _——_— = — :
5 og(2mo*) 53 ol — )7 2log(27m ) 5 2log(271'ec7 )
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Cross Entropy

H(p,q) = —E,[log(q))

Then one can write:

Dkr(p,q) = H(p,q) — H(p)

KL-Divergence is additional entropy introduced by
using g instead of p.

We saw this for Logistic regression

@AM 207



* H(p,q) and Dgry (p, q) are not symmetric.

e |f you use a unusual, low entropy distribution to
approximate a usual one, you will be more

surprised than if you used a high entropy, many
choices one to approximate an unusual one.

Corollary: if we use a high entropy
distribution to approximate the true
one, we Will incur lesser error.
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Gaussian is MAXENT for fixed mean and

variance
Consider
D1 (q,p) = E4llog(q/p)] = H(q,p) — H(q) >=0
H(q,p) = E,llog(p)] = —%log(%fz) 2; Ey[(z — p)?]

E,[(z — p)?] is CONSTRAINED to be o°.

= —%log(Zwecﬁ) = H(p) >= H(qg)!!!

1 1
H@M=—jw®®@—§
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EXPONENTIAL FAMILY

Likelihood in 1D:;

p(y|6) = (Hf (i) ) )" exp (¢(9) .n U(yi))

Example: Normal f(y) = (1/0+/2m)e > /%, u(y) = z /o,
g(p) = e * 27, ¢(u) = p/o

See wikipedia for more.
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https://en.wikipedia.org/wiki/Exponential_family
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Importance of MAXENT

e most common distributions used as likelihoods (and
priors) are in the exponential family, MAXENT
subject to different constraints.

e gamma: MAXENT all distributions with the same
mean and same average logarithm.

e exponential: MAXENT all non-negative continuous
distributions with the same average inter-event
displacement
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Importance of MAXENT

e |Information entropy enumerates the number of

ways a distribution can arise, after having fixed
some assumptions.

e choosing a maxent distribution as a likelihood

means that once the constraints has been met, no
additional assumptions.

The most conservative distribution
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Bayesian statistics

@AM 207



Frequentist Stats

e parameters are fixed, data is stochastic
e true parameter §* characterizes population

e we estimate 6 on sample

e we canuse MLE §,,; = argmax L
2

e we obtain sampling distributions (using bootstrap)

e predictive distribution through the sampling

distribution
AM 207



Frequentist Bestiary

e Parameter sampling distribution
e predictive distribution

e MLE (or other point) estimate
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Bayesian Stats

e assume sample IS the data, no stochasticity
e parameters 6 are stochastic random variables

e associate the parameter 6 with a prior distribution p(6)

 The prior distribution generally represents our belief on
the parameter values when we have not observed any
data yet ( to be qualified later)

e obtain posterior distributions

e predictive distribution from the posterior
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Basic ldea

Get the joint Probability distribution

”~

P(weapon,murderer) P(murderer) P(weapon|murderer)

Now we condition on some random variables and
learn the values of others.
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Rules
1. P(A,B) = P(A | B)P(B)
2.P(A)=) P(A,B)=)» P(A|B)P(B)

P(A) is called the marginal distribution of A,
obtained by summing or marginalizing over B.
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Posterior distribution from Bayes Rule

_ p(y,0)
p(y|6) p(0)
p(D|6) p(6)
p(0|D = {y}) (D)
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Evidence

p(D) or p(y) (marginal distribution of y) the
expected likelihood (on existing data points) over the
prior E,g) [L]:

p(y) = / dfp(8,y) = / df p(y|0)p(6).
p(D = {y}) = / d6p(6, D) — / 48 p(D|6)p(8).
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Posterior

likelthood X prior

prior

likelihood

posterior

posterior = ,
evidence

posterior « likelihood X prior

e evidence is just the
normalization

e usually dont care about
normalization (until model
comparison), just pdf/pmf or
samples
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Marginalization

What if € is multidimensional?

Integrate the posterior over all "other" or "nusisance”
parameters.

Marginal posterior: p(6;|D) = /dﬁlp(9|D).
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Basic Graph

p(0,y,y") = p(0)p(y|0)p(y*|0)
= p(0|y)p(y)p(y"|0)
p(y* ) = / 46p(6, 4" |y)

_ /dep(y Y, 0)

p(y)

p(y"|y) = / 46 p(8])p(y"|0)
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Posterior Predictive for predictions

The distribution of a future data point y*:

p(y*|D = {y}) = / dop(y*,0/{y}).

p(y|D = {y}) = / d6p(" 10)p(6/{v}).

Expectation of the likelihood at a new point(s) over
the posterior E, g p) [p(y*|0)].
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Prior Predictive for simulations

The distribution of a data point y from the prior:

p(y) = / dfp(0,y) = / do p(y|0)p(0).

the expected likelihood over the prior E, L]

(like the evidence, but not just at the data)
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Summary via MAP (a point estimate)

briap = arg max p(d|D)

= arg max

o p(D)

= arg max L p(0)
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Bayesian Bestiary

e Prior

e posterior

e evidence

e prior predictive

e posterior predictive

e MAP (or other point) estimate
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Conjugate Prior

e A conjugate prior is one which, when multiplied
with an appropriate likelihood, gives a posterior
with the same functional form as the prior.

e Likelihoods in the exponential family have
conjugate priors in the same family

e analytical tractability AND interpretability
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Coin Toss Model

e Coin tosses are modeled using the Binomial Distribution,
which is the distribution of a set of Bernoulli random
variables.

e The Beta distribution is conjugate to the Binomial
distribution

p(ply) x p(y|p)P(p) = Binom(n,y,p) x Beta(a, B)
Because of the conjugacy, this turns out to be:
Beta(y + a,n —y + B)
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BETA DISTRIBUTION

Beta(a, B) = (1 2)"

B(a, B)
where

1
B(a, ) = /O t (1 — )P de

Prior heads: «, prior tails: 3, so
heads fraction is a/(a + B) .



Priors Regularize

e think of a prior as a regularizer.

* a Beta(1,1) prioris equivalent to a uniform distribution.

e This is an uninformative prior. Here the prior adds one
heads and one tails to the actual data, providing some
"towards-center" regularization

e especially useful where in a few tosses you got all
heads, clearly at odds with your beliefs.

* a Beta(2,1) prior would bias you to more heads
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Bayesian updating of posterior probabilities
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Bayesian Updating "on-line"

e can update prior to posterior all at once, or one by one

e as each piece of data comes in, you update the prior by multiplying by
the one-point likelihood.

e the posterior you get becomes the prior for our next step

p(0 | {y1, -, Ynt1}) x D{Yns1} | 0) x (0 | {y1,---,Un})

e the posterior predictive is the distribution of the next data point!

P(Unr1{y1s - U }) = Epofy,,..s ) [P(Unt1160)] = / d0 p(yn+1|0)P(O{y1s- - Yn})
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Bayesian Updating of
globe

e Seal tosses globe, 0 is true
water fraction

e data WLWWWLWLW

 notice how the posterior shifts
left and right depending on
new data

At each step:

Beta(y+ a,n —y+



Samples, Samples, Samples

e for globe toss, simple use scipy.stats to sample
from appropriate beta distribution. We then have
our posterior

e what about the predictive distributions? They are
Beta-Binomial distributions. Complicated.

e Sampling gives us an easier way!
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1.2

Posterior properties

 The probability that the amount

of water is less than 50%:
np.mean(samples < 0.5) =
0.173

Credible Interval: amount of
probability mass.
np.percentile(samples,
[10, 90]) = [ 0.44604094,
0.81516349]

np.mean(samples),
np.median(samples) =
(0.637/87343440555842,
0.64731430523031453)



MAP, a point estimate

Oriap = arg max p(6]D)

L p(0)

p(D)

= arg max L p(6)

— arg max
6

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0@])
mapvalue = sampleshisto[1l][maxcountindex ]
print(maxcountindex, mapvalue)

31 0.66257/8641304
OR Optimize!
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Posterior Mean
minimizes squared loss

R(t) = Eyon) (0~ 8] = [ a8(6 — t7p(6ID)

dR(t)

— t= [ dOOp(6|D
o 0 = / p(0|D)

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

Mean is at 0.638.

This is Decision Theory.
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Posterior predictive

p(y*|D) = / dop(y*|0)p(6|D)

Its a Beta-Binomial distribution.

Risk Minimization holds here too:

Yminmse = /dyyp(y‘D)
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Posterior predictive forglobe tosses

@AM 207



Plug-in Approximations

O 4p 1S @ point estimate.

Consider p(8|D) = 6(0 — Opr4p) and then draw
p(y*|D) = p(y*|0rap) @ sampling distribution.

Underestimates spread.
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Posterior predictive
from sampling

draw the thetas from posterior

then draw y's from the
sampling distribution

and histogram it

these are draws from joint y, 6

postpred = np.random.binomial(n,samples)
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Data overwhelms
prior eventually
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Sufficient Statistics and the exponential
family

Likelihood:

p(y|0) = (Hf Yi ) )" exp (¢(9) |

] 3
el
=
~~
$
—
N—

n
Z u(y; ) is said to be a sufficient statistic for ¢
i=1
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Poisson Gamma Example

The data consists of 155 women who were 40 years
old. We are interested in the birth rate of women with
a college degree and women without. We are told
that 111 women without college degrees have 217
children, while 44 women with college degrees have

66 children.
Let Y7 4,...,Y,, 1 children for the n; women without
college degrees, and Y7 5, ...,Y,, 2 for n, women

with college degrees.
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Exchangeability

Lets assume that the number of children of a women
In any one of these classes can me modelled as
coming from ONE birth rate.

The in-class likelihood for these women is invariant to
a permutation of variables.

This is really a statement about what is [ID and what
IS not.

It depends on how much knowledge you have...
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Poisson likelihood

Y1 ~ Poisson(6:),Y;2 ~ Poisson(6,)

7 1 Yii —
p(Y11,...,Yn,1/01) HP HY ,9 e

= c(Yi1,..., Y1) (n16y)2=Yre ™% ~ Poisson(n,6;)

Yia,..., Y, 2|02 ~ Poisson(nz205)
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Posterior

1(N1, Y1, Yny ) (n161)=Y1e ™% p(61) X ca(na, Y1, -, Yny) (n2b2)Z"2e7™% p(6)

Z Y., total number of children in each class of mom,

is sufficient statistics
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Conjugate prior

Sampling distribution for 8: p(Y1, ..., y,|0) ~ =Yie™

Form is of Gamma. In shape-rate parametrization
(wikipedia)

_ _ b® a—1 _—b0
p(#) = Gamma(6d,a,b) = ') 0 e

Posterior:
p(8|Y1,...,Y,) xp(Y1,...,v.|0)p(6) ~ Gamma(6,a + ZYi,b +n)
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Priors and Posteriors
We choose 2,1 as our prior.
(01 |n, Zl Y1) ~ Gamma(6,, 219, 112)
p(02 |ns, Z Y:2) ~ Gamma(6,, 68,45)

Prior mean, variance:
E[0] = a/b,var[f] = a/b.



Posteriors

El6] = (a+ ) u)/(b+N)

varlf] = (a+ Y u:)/(b+ V)2,

np.mean(thetal),
np.var(thetal) =
(1.9516881521791478,
0.01852/7204185785/785)

np.mean(thetal),
np.var(thetal) =
(1.5037252100213609,
0.034220717257786061)
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Posterior Predictives

p(y°| D) = / d6p(y*19)p(6| D)

Sampling makes it easy:

poisson.rvs(thetal)
poisson.rvs(thetal)

postpredl
postpred?2

Negative Binomial:
* a + Yi
S DEL

G+ )
SN CRD)
varly*| = b+ N’ (N+b+1).



But see width:

np.mean(postpredl),
np.var(postpredl)=(1.9/6,
1.8554259999999997/)

Posterior predictive smears out posterior error with
sampling distribution

@AM 207



