Lecture 7 From Information Theory to Bayesian Stats

Last Time:

- The Learning process
- Risk and Bayes Risk
- The KL Divergence and Deviance
- In-sample penalties: the AIC

Today

- Entropy
- Maximum Likelihood and Entropy
- Bayesian Stats
- Exponential Family

HW submissions

- are having too much entropy, SO
- put care into your submission, its a real-world document and must be well organized and neat.
- Dont leave stray code around document. Cite sources.
- use jupyter notebooks only. Not Colab, not additional python files.
- One notebook per submission please!
- learn how to use markdown and latex-in-markdown well.

Submission format

- only one per group
- all names in group clearly at top of the document
- Name notebook thus: AM207 HWx.ipynb
- Submit via a canvas group. Create a group in the people section. Then when one person submits you're all notified
- Please follow, or TFs will start penalizing

KL-Divergence

$$
D_{KL}(p,q) = E_p[log(p) - log(q)] = E_p[log(p/q)]\\ = \sum_i p_i log(\frac{p_i}{q_i}) \; or \; \int dPlog(\frac{p}{q})
$$

$$
D_{KL}(p,p)=0\,
$$

KL divergence measures distance/dissimilarity of the two distributions $p(x)$ and $q(x)$. Its >= 0.

Divergence: **The additional uncertainty** induced by using probabilities from one distribution to describe another distribution - McElreath page 179

MARS ATTACKS (Topps, 1962; Burton 1996)

 $Earth: q = \{0.7, 0.3\}, Mars: p = \{0.01, 0.99\}.$

Earth to predict Mars, less surprise on landing: $D_{KL}(p,q) = 1.14, D_{KL}(q,p) = 2.62$.

PROBLEM: we dont know distribution p . If we did, why do inference?

SOLUTION: Use the empirical distribution That is, approximate population expectations by sample averages.

$$
\implies D_{KL}(p,q) = E_p[log(p/q)] = \frac{1}{N}\sum_i log(p_i/q_i)
$$

Maximum Likelihood justification

$$
D_{KL}(p,q) = E_p[log(p/q)] = \frac{1}{N}\sum_i(log(p_i) - log(q_i)
$$

Minimizing KL-divergence \implies maximizing $\sum log(q_i)$

Which is exactly the log likelihood! MLE!

Information and Uncertainty

- coin at 50% odds has maximal uncertainty
- reflects my lack of knowledge of the physics
- many ways for 50% heads.
- an election with $p=0.99$ has a lot of Information

information is the reduction in uncertainty from learning *an outcome*

Information Entropy, a measure of uncertainty

Desiderata:

- must be continuous so that there are no jumps
- must be additive across events or states, and must increase as the number of events/states increases

$$
H(p)=-E_p[log(p)]=-\int p(x)log(p(x))dx \;\; OR \; -\sum_i p_i log(p_i)
$$

Entropy for coin fairness

$$
H(p)=-E_p[log(p)]=-p*log(p)-(1-p)*log(1-p)\\
$$

Maximum Entropy (MAXENT)

- finding distributions consistent with constraints and the current state of our information
- what would be the least surprising distribution?
- The one with the least additional assumptions?

The distribution that can happen in the most ways is the one with the highest entropy

For a gaussian

$$
p(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}
$$

$$
H(p) = E_p [log(p)] = E_p [-\frac{1}{2} log(2\pi \sigma^2) - (x-\mu)^2/2\sigma^2]
$$

$$
= -\frac{1}{2} log(2\pi \sigma^2) - \frac{1}{2\sigma^2} E_p[(x-\mu)^2] = -\frac{1}{2} log(2\pi \sigma^2) - \frac{1}{2} = \frac{1}{2} log(2\pi e \sigma^2)
$$

Cross Entropy

$$
H(p,q)=-E_p[\mathit{log}(q)]
$$

Then one can write:

$$
D_{KL}(p,q)=H(p,q)-H(p)\,
$$

KL-Divergence is additional entropy introduced by using q instead of p .

We saw this for Logistic regression

- $H(p,q)$ and $D_{KL}(p,q)$ are not symmetric.
- if you use a unusual, low entropy distribution to approximate a usual one, you will be more surprised than if you used a high entropy, many choices one to approximate an unusual one.

Corollary: if we use a high entropy distribution to approximate the true one, we will incur lesser error.

Gaussian is MAXENT for fixed mean and variance

Consider $D_{KL}(q,p)=E_q[log(q/p)]=H(q,p)-H(q)> =0$

$$
H(q,p)=E_q[log(p)]=-\frac{1}{2}log(2\pi\sigma^2)-\frac{1}{2\sigma^2}E_q[(x-\mu)^2]
$$

 $E_{\sigma}[(x-\mu)^{2}]$ is CONSTRAINED to be σ^{2} . $H(q,p)=-\frac{1}{2}log(2\pi\sigma^2)-\frac{1}{2}=-\frac{1}{2}log(2\pi e\sigma^2)=H(p)>=H(q)$

EXPONENTIAL FAMILY

$$
p(y_i|\theta) = f(y_i)g(\theta) e^{\phi(\theta)^T u(y_i)}.
$$

Likelihood in 1D:

$$
p(y|\theta) = \left(\prod_{i=1}^n f(y_i)\right) g(\theta)^n \; \exp\Biggl(\phi(\theta) \sum_{i=1}^n u(y_i) \Biggr)
$$

Example: Normal $f(y) = (1/\sigma\sqrt{2\pi})e^{-x^2/2\sigma^2}$, $u(y) = x/\sigma$, $g(\mu)=e^{-\mu^2/2\sigma^2},\, \phi(\mu)=\mu/\sigma$

See [wikipedia](https://en.wikipedia.org/wiki/Exponential_family) for more.

Importance of MAXENT

- most common distributions used as likelihoods (and priors) are in the exponential family, MAXENT subject to different constraints.
- gamma: MAXENT all distributions with the same mean and same average logarithm.
- exponential: MAXENT all non-negative continuous distributions with the same average inter-event displacement

Importance of MAXENT

- Information entropy enumerates the number of ways a distribution can arise, after having fixed some assumptions.
- choosing a maxent distribution as a likelihood means that once the constraints has been met, no additional assumptions.

The most conservative distribution

Bayesian statistics

Frequentist Stats

- parameters are fixed, data is stochastic
- true parameter θ^* characterizes population
- we estimate $\hat{\theta}$ on sample
- we can use MLE $\hat{\theta}_{ML} = \mathop{\mathrm{argmax}}_{\theta} \mathcal{L}$
- we obtain sampling distributions (using bootstrap)
- predictive distribution through the sampling distribution

M 207

Frequentist Bestiary

- Parameter sampling distribution
- predictive distribution
- MLE (or other point) estimate

Bayesian Stats

- assume sample IS the data, no stochasticity
- parameters θ are stochastic random variables
- associate the parameter θ with a prior distribution $p(\theta)$
- The prior distribution generally represents our belief on the parameter values when we have not observed any data yet (to be qualified later)
- obtain posterior distributions
- predictive distribution from the posterior

Basic Idea

Get the joint Probability distribution

Now we condition on some random variables and learn the values of others.

Rules

1.
$$
P(A, B) = P(A | B)P(B)
$$

2. $P(A) = \sum_{B} P(A, B) = \sum_{B} P(A | B)P(B)$

 $P(A)$ is called the marginal distribution of A, obtained by summing or marginalizing over B .

Posterior distribution from Bayes Rule

$$
p(\theta|y) = \frac{p(y,\theta)}{p(y)}
$$

$$
p(\theta|y) = \frac{p(y|\theta) \, p(\theta)}{p(y)}
$$

$$
p(\theta|D=\{y\})=\frac{p(D|\theta)\,p(\theta)}{p(D)}
$$

$$
p(\theta|D) \propto p(D|\theta)\,p(\theta)
$$

Evidence

$p(D)$ or $p(y)$ (marginal distribution of y) the expected likelihood (on existing data points) over the prior $E_{p(\theta)}[\mathcal{L}]$:

$$
p(y)=\int d\theta\, p(\theta,y)=\int d\theta\, p(y|\theta)p(\theta).
$$

$$
p(D=\{y\})=\int d\theta\, p(\theta,D)=\int d\theta\, p(D|\theta)p(\theta).
$$

Posterior

 $\boldsymbol{likelihood \times prior}$ $posterior =$ $\overline{evidence}$

 $posterior \propto likelihood \times prior$

- evidence is just the normalization
- usually dont care about normalization (until model comparison), just pdf/pmf or samples

Marginalization

What if θ is multidimensional?

Integrate the posterior over all "other" or "nusisance" parameters.

Marginal posterior:
$$
p(\theta_1|D) = \int d\theta_{-1} p(\theta|D)
$$
.

Basic Graph

$$
p(\theta, y, y^*) = p(\theta)p(y|\theta)p(y^*|\theta) \\ = p(\theta|y)p(y)p(y^*|\theta) \\ p(y^*|y) = \int d\theta p(\theta, y^*|y) \\ = \int d\theta \frac{p(y^*, y, \theta)}{p(y)} \\ p(y^*|y) = \int d\theta p(\theta|y)p(y^*|\theta)
$$

Posterior Predictive for predictions

The distribution of a future data point y^* :

$$
p(y^*|D = \{y\}) = \int d\theta p(y^*, \theta | \{y\}).
$$

$$
p(y^*|D = \{y\}) = \int d\theta p(y^*|\theta)p(\theta|\{y\}).
$$

Expectation of the likelihood at a new point(s) over the posterior $E_{p(\theta|D)}[p(y^*|\theta)].$

Prior Predictive for simulations

The distribution of a data point y from the prior:

$$
p(y)=\int d\theta\, p(\theta,y)=\int d\theta\, p(y|\theta)p(\theta).
$$

the expected likelihood over the prior $E_{p(\theta)}[\mathcal{L}]$

(like the evidence, but not just at the data)

Summary via MAP (a point estimate)

$$
\theta_{\text{MAP}} = \arg \max_{\theta} \frac{p(\theta|D)}{p(\theta)}
$$

$$
= \arg \max_{\theta} \frac{\mathcal{L}p(\theta)}{p(D)}
$$

$$
= \arg \max_{\theta} \mathcal{L}p(\theta)
$$

Bayesian Bestiary

- · Prior
- · posterior
- · evidence
- prior predictive
- · posterior predictive
- MAP (or other point) estimate

Conjugate Prior

- A conjugate prior is one which, when multiplied with an appropriate likelihood, gives a posterior with the same functional form as the prior.
- Likelihoods in the exponential family have conjugate priors in the same family
- analytical tractability AND interpretability

Coin Toss Model

- Coin tosses are modeled using the Binomial Distribution, which is the distribution of a set of Bernoulli random variables.
- The Beta distribution is conjugate to the Binomial distribution

 $p(p|y) \propto p(y|p)P(p) = Binom(n, y, p) \times Beta(\alpha, \beta)$

Because of the conjugacy, this turns out to be:

$$
Beta(y+\alpha,n-y+\beta)
$$

BETA DISTRIBUTION

$$
Beta(\alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}
$$

where

$$
B(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt
$$

Prior heads: α , prior tails: β , so heads fraction is $\alpha/(\alpha+\beta)$.

Priors Regularize

- think of a prior as a regularizer.
- a $Beta(1, 1)$ prior is equivalent to a uniform distribution.
- This is an **uninformative prior**. Here the prior adds one heads and one tails to the actual data, providing some "towards-center" regularization
- especially useful where in a few tosses you got all heads, clearly at odds with your beliefs.
- a $Beta(2, 1)$ prior would bias you to more heads

Bayesian updating of posterior probabilities

Bayesian Updating "on-line"

- can update prior to posterior all at once, or one by one
- as each piece of data comes in, you update the prior by multiplying by the one-point likelihood.
- the posterior you get becomes the prior for our next step

$$
p(\theta \mid \{y_1,\ldots,y_{n+1}\}) \propto p(\{y_{n+1}\} \mid \theta) \times p(\theta \mid \{y_1,\ldots,y_n\})
$$

• the posterior predictive is the distribution of the next data point!

$$
p(y_{n+1} | \{y_1, \ldots y_n\}) = E_{p(\theta | \{y_1, \ldots y_n\})} [p(y_{n+1}|\theta)] = \int d\theta\, p(y_{n+1}|\theta) p(\theta | \{y_1, \ldots y_n\})
$$

.

Bayesian Updating of globe

- Seal tosses globe, θ is true water fraction
- data WLWWWLWLW \bullet
- notice how the posterior shifts left and right depending on new data

At each step:

$$
Beta(y + \alpha, n - y + \beta)
$$

Samples, Samples, Samples

- for globe toss, simple use scipy. stats to sample from appropriate beta distribution. We then have our posterior
- what about the predictive distributions? They are Beta-Binomial distributions. Complicated.
- Sampling gives us an easier way!

Posterior properties

- The probability that the amount of water is less than 50%: $np.macan(samples < 0.5) =$ 0.173
- Credible Interval: amount of probability mass. np.percentile(samples, $\lceil 10, 90 \rceil$) = $\lceil 0.44604094,$ 0.81516349]
- np.mean(samples), np.median(samples) = (0.63787343440335842, 0.6473143052303143)

MAP, a point estimate

$$
\theta_{\text{MAP}} = \arg \max_{\theta} \frac{p(\theta|D)}{p(\theta)} \\ = \arg \max_{\theta} \frac{\mathcal{L} \, p(\theta)}{p(D)} \\ = \arg \max_{\theta} \, \mathcal{L} \, p(\theta)
$$

sampleshisto = np.histogram(samples, bins=50) $maxcountindex = np.argvax(sampleshisto[0])$ $mapvalue = sampleshisto[1][maxcountindex]$ print(maxcountindex, mapvalue)

31 0.662578641304

OR Optimize!

Posterior Mean minimizes squared loss

$$
R(t)=E_{p(\theta|D)}[(\theta-t)^2]=\int d\theta (\theta-t)^2p(\theta|D)
$$

$$
\frac{dR(t)}{dt}=0\implies t=\int d\theta\theta\,p(\theta|D)
$$

mse = $[np.mac((xi-samples) * * 2) for xi in x]$ plt.plot(x, mse);

Mean is at 0.638.

This is Decision Theory.

Posterior predictive

$$
p(y^*|D) = \int d\theta p(y^*|\theta)p(\theta|D)
$$

Its a Beta-Binomial distribution.

Risk Minimization holds here too:

$$
y_{minmse} = \int dy\, y\, p(y|D)
$$

Plug-in Approximations

 θ_{MAP} is a point estimate.

Consider $p(\theta|D) = \delta(\theta - \theta_{MAP})$ and then draw

 $p(y^*|D) = p(y^*|\theta_{MAP})$ a sampling distribution.

Underestimates spread.

Posterior predictive from sampling

- draw the thetas from posterior
- then draw y's from the sampling distribution
- and histogram it
- these are draws from joint y, θ

postpred = np.random.binomial(n,samples)

Data overwhelms prior eventually

Sufficient Statistics and the exponential family

$$
p(y_i|\theta) = f(y_i)g(\theta)e^{\phi(\theta)^Tu(y_i)}.
$$

Likelihood:

$$
p(y|\theta) = \left(\prod_{i=1}^n f(y_i)\right) g(\theta)^n \; \exp\Biggl(\phi(\theta) \sum_{i=1}^n u(y_i)\Biggr)
$$

 \boldsymbol{n} $\sum u(y_i)$ is said to be a sufficient statistic for θ

Poisson Gamma Example

The data consists of 155 women who were 40 years old. We are interested in the birth rate of women with a college degree and women without. We are told that 111 women without college degrees have 217 children, while 44 women with college degrees have 66 children.

Let $Y_{1,1},\ldots,Y_{n_1,1}$ children for the n_1 women without college degrees, and $Y_{1,2},\ldots,Y_{n_2,2}$ for n_2 women with college degrees.

Exchangeability

Lets assume that the number of children of a women in any one of these classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a permutation of variables.

This is really a statement about what is IID and what is not.

It depends on how much knowledge you have...

Poisson likelihood

$$
Y_{i,1}\sim Poisson(\theta_1), Y_{i,2}\sim Poisson(\theta_2)
$$

$$
p(Y_{1,1},\ldots,Y_{n_1,1}|\theta_1)=\prod_{i=1}^{n_1}p(Y_{i,1}|\theta_1)=\prod_{i=1}^{n_1}\frac{1}{Y_{i,1}!}\theta_1^{Y_{i,1}}e^{-\theta_1}
$$

$$
=c(Y_{1,1},\ldots,Y_{n_1,1})\; (n_1\theta_1)^{\sum Y_{i,1}}e^{-n_1\theta_1}\sim Poisson(n_1\theta_1)
$$

$$
Y_{1,2},\ldots,Y_{n_1,2}|\theta_2\sim Poisson(n_2\theta_2)
$$

Posterior

 $\left(c_1(n_1, y_1, \ldots, y_{n_1}) \; (n_1 \theta_1)^{\sum Y_{i,1}} e^{-n_1 \theta_1} \; p(\theta_1) \times c_2(n_2, y_1, \ldots, y_{n_2}) \; (n_2 \theta_2)^{\sum Y_{i,2}} e^{-n_2 \theta_2} \; p(\theta_2) \right)$

$\sum Y_i$, total number of children in each class of mom, is sufficient statistics

Conjugate prior

Sampling distribution for $\theta: p(Y_1,\ldots,y_n|\theta) \sim \theta^{\sum Y_i} e^{-n\theta}$

Form is of $Gamma$. In shape-rate parametrization (wikipedia)

$$
p(\theta) = \text{Gamma}(\theta, \text{a}, \text{b}) = \frac{\text{b}^{\text{a}}}{\Gamma(\text{a})} \theta^{\text{a}-1} \text{e}^{-\text{b} \theta}
$$

Posterior: $p(\theta|Y_1,\ldots,Y_n) \propto p(Y_1,\ldots,y_n|\theta)p(\theta) \sim \text{Gamma}(\theta,\text{a}+\sum Y_i,\text{b}+\text{n})$

Priors and Posteriors

We choose 2,1 as our prior.

$$
p(\theta_1|n_1, \sum_i^{n_1}Y_{i,1})\sim \mathrm{Gamma}(\theta_1,219,112)
$$

$$
p(\theta_2|n_2, \sum_i^{n_2}Y_{i,2})\sim\mathrm{Gamma}(\theta_2, 68, 45)
$$

Prior mean, variance: $E[\theta] = a/b, var[\theta] = a/b^2.$

Posteriors

$$
E[\theta]=(a+\sum y_i)/(b+N)\\var[\theta]=(a+\sum y_i)/(b+N)^2.
$$

np.mean(theta1), np.var(theta1) = (1.9516881521791478, 0.018527204185785785)

np.mean(theta2), np.var(theta2) = (1.5037252100213609, 0.034220717257786061)

Posterior Predictives

$$
p(y^*|D) = \int d\theta p(y^*|\theta)p(\theta|D)
$$

Sampling makes it easy:

postpred1 = poisson.rvs(theta1) postpred2 = poisson.rvs(theta2)

Negative Binomial:

$$
\begin{aligned} E[y^*] &= \frac{(a+\sum y_i)}{(b+N)}\\ var[y^*] &= \frac{(a+\sum y_i)}{(b+N)^2}(N+b+1). \end{aligned}
$$

But see width:

```
np.mean(postpred1), 
np.var(postpred1)=(1.976, 
1.8554239999999997)
```
Posterior predictive smears out posterior error with sampling distribution

