
Lecture 7

From Informa*on Theory to 
Bayesian Stats



Last Time:

• The Learning process

• Risk and Bayes Risk

• The KL Divergence and Deviance

• In-sample penal<es: the AIC



Today

• Entropy

• Maximum Likelihood and Entropy

• Bayesian Stats

• Exponen9al Family



HW submissions

• are having too much entropy, SO

• put care into your submission, its a real-world document 
and must be well organized and neat. 

• Dont leave stray code around document. Cite sources.

• use jupyter notebooks only. Not Colab, not addiBonal 
python files.

• One notebook per submission please!

• learn how to use markdown and latex-in-markdown well.



Submission format

• only one per group

• all names in group clearly at top of the document

• Name notebook thus: AM207_HWx.ipynb 

• Submit via a canvas group. Create a group in the 
people sec9on. Then when one person submits 
you're all no9fied

• Please follow, or TFs will start penalizing



KL-Divergence

KL divergence measures distance/dissimilarity of the 
two distribu9ons  and . Its >= 0.



Divergence: 
The addi(onal uncertainty 

induced by using probabili(es 
from one distribu(on to 

describe another distribu(on
- McElreath page 179



MARS ATTACKS (Topps, 1962; Burton 1996)

.

Earth to predict Mars, less surprise on landing:  .



PROBLEM: we dont know distribu6on . If 
we did, why do inference?

SOLUTION: Use the empirical distribu8on
That is, approximate popula1on expecta1ons 

by sample averages.



Maximum Likelihood jus1fica1on

Minimizing KL-divergence  maximizing 

Which is exactly the log likelihood! MLE!



Informa(on and Uncertainty

• coin at 50% odds has maximal uncertainty

• reflects my lack of knowledge of the physics

• many ways for 50% heads.

• an elec=on with  has a lot of Informa=on

informa(on is the reduc(on in uncertainty from learning 
an outcome



Informa(on Entropy, a measure of 
uncertainty

Desiderata:
- must be con2nuous so that there are no jumps
- must be addi2ve across events or states, and must 
increase as the number of events/states increases



Entropy for coin fairness

def h(p):
    if p==1.:
        ent = 0
    elif p==0.:
        ent = 0
    else:
        ent = - (p*math.log(p) + (1-p)* math.log(1-p))



Maximum Entropy (MAXENT)

• finding distribu-ons consistent with constraints 
and the current state of our informa-on

• what would be the least surprising distribu-on?

• The one with the least addi-onal assump-ons?

The distribu,on that can happen in the most ways is 
the one with the highest entropy



For a gaussian



Cross Entropy

Then one can write:

KL-Divergence is addi0onal entropy introduced by 
using  instead of .

We saw this for Logis/c regression



•  and  are not symmetric.

• if you use a unusual , low entropy distribu7on to 
approximate a usual one, you will be more 
surprised than if you used a high entropy, many 
choices one to approximate an unusual one.

Corollary: if we use a high entropy 
distribu6on to approximate the true 

one, we will incur lesser error.



Gaussian is MAXENT for fixed mean and 
variance

Consider 

 is CONSTRAINED to be .





EXPONENTIAL FAMILY

Likelihood in 1D: 

Example: Normal , , 
, 

See wikipedia for more.

https://en.wikipedia.org/wiki/Exponential_family




Importance of MAXENT

• most common distribu.ons used as likelihoods (and 

priors) are in the exponen.al family, MAXENT 

subject to different constraints.

• gamma: MAXENT all distribu.ons with the same 

mean and same average logarithm.

• exponen.al: MAXENT all non-nega.ve con.nuous 

distribu.ons with the same average inter-event 

displacement



Importance of MAXENT

• Informa)on entropy enumerates the number of 
ways a distribu)on can arise, a8er having fixed 
some assump)ons.

• choosing a maxent distribu)on as a likelihood 
means that once the constraints has been met, no 
addi)onal assump)ons.

The most conserva.ve distribu.on 



Bayesian sta*s*cs



Frequen'st Stats

• parameters are fixed, data is stochas2c

• true parameter  characterizes popula2on

• we es2mate  on sample

• we can use MLE 

• we obtain sampling distribu2ons (using bootstrap)

• predic2ve distribu2on through the sampling 
distribu2on



Frequen'st Bes'ary

• Parameter sampling distribu2on

• predic2ve distribu2on

• MLE (or other point) es2mate



Bayesian Stats

• assume sample IS the data, no stochas3city

• parameters  are stochas3c random variables

• associate the parameter  with a prior distribu3on 

• The prior distribu3on generally represents our belief on 
the parameter values when we have not observed any 
data yet ( to be qualified later)

• obtain posterior distribu3ons

• predic3ve distribu3on from the posterior



Basic Idea

Get the joint Probability distribu3on

Now we condi*on on some random variables and 
learn the values of others.



Rules

1.

2.

 is called the marginal distribu.on of A, 
obtained by summing or marginalizing over .



Posterior distribu,on from Bayes Rule

 

 



Evidence

 or  (marginal distribu.on of y) the 
expected likelihood (on exis2ng data points) over the 

prior :



Posterior

• evidence is just the 
normaliza4on

• usually dont care about 
normaliza4on (un4l model 
comparison), just pdf/pmf or 
samples



Marginaliza)on

What if  is mul,dimensional?

Integrate the posterior over all "other" or "nusisance" 
parameters.

Marginal posterior: 



Basic Graph



Posterior Predic+ve for predic+ons

The distribu,on of a future data point :

.

.

Expecta(on of the likelihood at a new point(s) over 
the posterior .



Prior Predic)ve for simula)ons

The distribu,on of a data point  from the prior:

the expected likelihood over the prior 

(like the evidence, but not just at the data)



Summary via MAP (a point es4mate)



Bayesian Bes)ary

• Prior

• posterior

• evidence

• prior predic/ve

• posterior predic/ve

• MAP (or other point) es/mate



Conjugate Prior

• A conjugate prior is one which, when mul0plied 
with an appropriate likelihood, gives a posterior 
with the same func0onal form as the prior.

• Likelihoods in the exponen0al family have 
conjugate priors in the same family

• analy0cal tractability AND interpretability



Coin Toss Model

• Coin tosses are modeled using the Binomial Distribu5on, 
which is the distribu5on of a set of Bernoulli random 
variables.

• The Beta distribu5on is conjugate to the Binomial 
distribu5on

Because of the conjugacy, this turns out to be:

 



BETA DISTRIBUTION

where 

Prior heads: , prior tails: , so 
heads frac2on is  . 



Priors Regularize

• think of a prior as a regularizer.

• a  prior is equivalent to a uniform distribu9on.

• This is an uninforma)ve prior. Here the prior adds one 
heads and one tails to the actual data, providing some 
"towards-center" regulariza9on

• especially useful where in a few tosses you got all 
heads, clearly at odds with your beliefs.

• a  prior would bias you to more heads





Bayesian Upda,ng "on-line"

• can update prior to posterior all at once, or one by one

• as each piece of data comes in, you update the prior by mul6plying by 
the one-point likelihood.

• the posterior you get becomes the prior for our next step

• the posterior predic-ve is the distribu-on of the next data point!

.



Bayesian Upda,ng of 
globe

• Seal tosses globe,  is true 
water frac3on

• data WLWWWLWLW

• no3ce how the posterior shi8s 
le8 and right depending on 
new data

At each step:



Samples, Samples, Samples

• for globe toss, simple use scipy.stats to sample 
from appropriate beta distribu3on. We then have 
our posterior

• what about the predic3ve distribu3ons? They are 
Beta-Binomial distribu3ons. Complicated.

• Sampling gives us an easier way!



Posterior proper*es

• The probability that the amount 
of water is less than 50%: 
np.mean(samples < 0.5) = 
0.173

• Credible Interval: amount of 
probability mass. 
np.percentile(samples, 
[10, 90]) = [ 0.44604094,  
0.81516349]

• np.mean(samples), 
np.median(samples) = 
(0.63787343440335842, 
0.6473143052303143)



MAP, a point es.mate

sampleshisto = np.histogram(samples, bins=50)
maxcountindex = np.argmax(sampleshisto[0])
mapvalue = sampleshisto[1][maxcountindex]
print(maxcountindex, mapvalue)

31 0.662578641304

OR Op%mize!



Posterior Mean 
minimizes squared loss

mse = [np.mean((xi-samples)**2) for xi in x]
plt.plot(x, mse);

Mean is at 0.638.

This is Decision Theory.





Posterior predic,ve

Its a Beta-Binomial distribu2on.

Risk Minimiza+on holds here too: 



Posterior predic,ve for globe tosses



Plug-in Approxima0ons

 is a point es*mate.

Consider  and then draw

 a sampling distribu/on.

Underes'mates spread.





Posterior predic,ve 
from sampling

• draw the thetas from posterior

• then draw y's from the 
sampling distribu7on

• and histogram it

• these are draws from joint 

postpred = np.random.binomial(n,samples)





Data overwhelms 
prior eventually



Sufficient Sta+s+cs and the exponen+al 
family

Likelihood: 

 is said to be a sufficient sta+s+c for 



Poisson Gamma Example

The data consists of 155 women who were 40 years 
old. We are interested in the birth rate of women with 

a college degree and women without. We are told 
that 111 women without college degrees have 217 
children, while 44 women with college degrees have 

66 children.

Let  children for the  women without 
college degrees, and  for  women 
with college degrees.



Exchangeability

Lets assume that the number of children of a women 
in any one of these classes can me modelled as 
coming from ONE birth rate.

The in-class likelihood for these women is invariant to 
a permuta7on of variables.

This is really a statement about what is IID and what 
is not.

It depends on how much knowledge you have...



Poisson likelihood



Posterior

, total number of children in each class of mom, 
is sufficient sta+s+cs



Conjugate prior

Sampling distribu0on for : 

Form is of . In shape-rate parametriza3on 
(wikipedia)

Posterior: 



Priors and Posteriors

We choose 2,1 as our prior.

Prior mean, variance: 



Posteriors

np.mean(theta1), 
np.var(theta1) = 
(1.9516881521791478, 
0.018527204185785785)

np.mean(theta2), 
np.var(theta2) = 
(1.5037252100213609, 
0.034220717257786061)



Posterior Predic+ves

Sampling makes it easy:

postpred1 = poisson.rvs(theta1)
postpred2 = poisson.rvs(theta2)

Nega%ve Binomial:



But see width:

np.mean(postpred1), 
np.var(postpred1)=(1.976, 
1.8554239999999997)

Posterior predic,ve smears out posterior error with 
sampling distribu,on


