Lecture 6

Risk and Information Theory
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Last Time:

e Normal MLE and Regression
e Test Sets

e Validation and X-validation

e Regularization
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Today

e Risk and Bayes Risk

e The KL Divergence and Deviance
 |n-sample penalties: the AIC

e Entropy

e Maximum Likelihood and Entropy
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Sources of Variability

e sampling (induces variation in a mis-specified
model)

* noise (the true p(y|x))

* mis-specification
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Risk for a given h

Define:
Rout(h) = Bz [(R(z) — y)*|h] = / dydz p(z,y) (h(z) — y)?

— [ dudepy | 2)p(@)(h(z) ~ v)* = ExEyixl(h ~ v)’]

Rt (h) = / dap(z, y)(h(z) — f(z) — €)°.

(we assume O mean finite-variance noise ¢)
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 Varying training sets make empirical R, (h) a

stochastic quantity, varying from one training set to
another.

e This can be written as:

e Average empirical risk over the training sets (a
different model is fit on each set)
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Bayes Risk

R" = inf Royy(h) = in / dap(z, ) (h(z) — v)?.

Its the minimum risk ANY model can achieve.

Want to get as close to it as possible.

Could infimum amongst all possible functions.
OVERFITTING!

Instead restrict to a particular Hypothesis Set: ‘H.

@AM 207



Bayes Risk for Regression

Rout (h) = / dzp(z,y)(h(z) — y)°.

= ExEyix[(h —y)’] = ExEyix[(h — 7+ 7 — y)°]
where r(z) = Eyx|y] is the "regression” function.
Rout(h) = Ex[(h —7)*] + R"; R* = ExEyix[(r — y)’]

For O mean, finite variance, then, o2, the noise of ¢, is the Bayes
Risk, also called the irreducible error.
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Empirical Risk Minimization

e | LN suggests that we can replace the risk integral
by a data sum and then minimize

o Assume (z;,y;) ~ P(z,y) (use empirical distrib)

e Fit hypothesis h = gp, where D is our training
sample.

* Rout (gD) — Z(gz — yz')z

1€D

e minimize to get best for gp
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R(h) = Exy |L(h,y)]
B = % 3 Lo h(e0)

For each h LLN implies convergence from empirical to
actual.

Now, R* = inf R(h) becomes infimum over empirical
allh

risks. But again restrict to ‘H otherwise overfitting!
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 Varying training sets make empirical R, (h) a

stochastic quantity, varying from one training set to
another.

 Thus average empirical risk over the training sets (a
different model is fit on each set)

e Goal of Learning: Build a function whose risk is
closest to Bayes Risk
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(R) = Ep[Rout(90)] = EpEp(z) (90 (z) — y)°]

g = Eplgp] = (1/M) )  gp- Then,

<R> — Ep(:l:) [ED[(gD — g)z]] + Ep(«’L’) [(f — 9)2] +0°

where y = f(x) + e is the true generating process

and € has O mean and finite variance o2.
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(R) = Epay) [Ep[(90 — 8)*]] + Epay) [(f — 9)°] + 0
This is the bias variance decomposition for regression.

Or, written as (R) — R", this is

variance + bias?, or

estimation-error + approximation-error

R(g) — inf R(g) + inf R(g9) — R’

geH geH
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e first term is variance, squared error of the various
fit g's from the average g, the hairiness.

e second term is bias, how far the average g is from
the original f this data came from.

e third term is the stochastic noise, minimum error
that this model will always have.
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SMALL World vs BIG
World

Small World answers the
guestion: given a model class
(i.e. a Hypothesis space, whats
the best model in it). It
involves parameters. lts model
checking.

BIG World compares model
spaces. Its model comparison
with or without
"hyperparameters".
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VALIDATION

e train-test not enough as we fit
for d on test set and
contaminate it

e thus do train-validate-test

Dataset D
e N
—_ N
. A Y I _J
N Y Y
Training Validation Test
Set Set Set
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CROSS-VALIDATION

For hypothesis set H , : D
e
— ——
Fold 1 train g F4, estimate Rg4
Fold 2 train g f,, estimate R,
Fold 3 train g5, estimate Rgq
Fold 4 train g"p 4, estimate R,

Calculate total error or risk over folds:

REq * Rpp + Rpg + Ry

R =
Y P
For hypothesis H ,, report R cV ;I:f?to?z:
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trains g. € H, testsg. = H.
estimates Rout(g‘)




REGULARIZATION: A
SMALL WORLD
APPROACH

Keep higher a-priori complexity and impose a

complexity penalty

on risk instead, to choose a SUBSET of #y,,,.
We'll make the coefficients small:

5:03 < C.
1=0
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Regularzed with o =0.2
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REGULARIZATION

J

R(hs) = D) (v — hj(z:))* +a ) 62

As we increase a, coefficients go
towards O.

j

Lasso uses a Z 6; ], sets
i=0

coefficients to exactly O.



Regularization with Cross-Validation
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MODEL COMPARISON: In-sample
estimation

e Suppose we have a large-world subset of nested models.
e ..thus the models have the same likelihood form
e would be nice to not have to spend data on validation sets

e and exploit the notion that a negative log likelihood is a
loss

e we could use strength of effects

e but not really needed for prediction

@AM 207



KL-Divergence

Dk (p,q) = Ep[log(p) — log(q)] = Ep[log(p/q)]
= sz-log(%) or /dPlog(E)

q

Dgkr,(p,p) =0

KL divergence measures distance/dissimilarity of the
two distributions p(x) and g(x).
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Divergence:
The additional uncertainty
induced by using probabilities
from one distribution to

describe another distribution
- McElreath page 179
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KL example

Bernoulli Distribution p with
p = 0.3.

Try to approximate by g. What
parameter?

def kld(p,q):
return p*np.log(p/q) + (1-p)*np.log((1-p)/(1-9))

@AM 207

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.0

0.2

04

0.6

0.8

1.0



Jensen's Inequality for convex f(x):

E[f(X)] = f(E[X])

Af(z1) + (1= A)f(z2)

f(Azy + (1 — A)x2)
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KL-Divergence is always non-negative

Jensen's inequality:

—> Dk (p,q) > 0(0iff g = pVx).

Dk1(p,q) = Eyllog(p/q)] = E,|—log(q/p)] > —log(E,|q/p]) =
— log( / dQ) =0
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MARS ATTACKS (Topps, 1962; Burton 1996)

Earth : ¢ = {0.7,0.3}, Mars : p = {0.01,0.99}.

Earth to predict Mars, less surprise on landing: Dk, (p,q) = 1.14, Dk 1. (g, p) = 2.62..
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PROBLEM: we dont know distribution p. If
we did, why do inference?

SOLUTION: Use the empirical distribution

That is, approximate population expectations
by sample averages.

—> Dkr(p,q) = Ep|log(p/q)| = Z log(pi/a:)
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Maximum Likelihood justification

1

D1 (p,q) = Epllog(p/9)] = = ) _(log(p:) — log(a:)

Minimizing KL-divergence — maximizing

Z log(q;)

Which is exactly the log likelihood! MLE!
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Model Comparison: Likelihood Ratio

Dkr(p,q) — Dkr(p,7) = Epllog(r) — log(q)| = E, [log(g)]

In the sample approximation we have:

L) = log(7)

Dkr1(p,q) — Dkr(p,7) = 2109( — —ZOQ(H Nlog
q
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MODEL COMPARISON: Deviance

You only need the sample averages of the logarithm
of r and ¢:

Dkr(p,q) — Dxr(p, ) = (log(r)) — (log(q))

Define the deviance: D(q) = —2 Z log(g;), a LOSS ..

Dkr1.(p,q) — Dkr(p,7) = (D(q) — D(r))
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Example

Generate data from:
i = 0.15:131,7; — 0.45132,,5, Yy ~ N(,u, 1)

2 parameter model.

Generate 10,000 realizations, for 1-5 parameters, 20
data points and 100 data points.

Split into train and test, and do OLS.
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Train and Test Deviances
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Train and Test Deviances
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The test set deviances are 2 x p above the training set
ones.
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Akake Information Criterion:

AlIC estimates out-of-sample deviance

AIC = Dyrgin + 2p

e Assumption: likelihood is approximately
multivariate gaussian.

e penalized log-likelihood or risk if we choose to
identify our distribution with the likelihood:
REGULARIZATION
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AlIC for Linear Regression
AIC = Dtraz’n + 2p where
D(q) = —2) log(q;) = —2¢

1
O-?WLE — NSSE

N 1
AIC = —2(——(log(2m) + log(c”)) — 2(—=———— x SSE) + 2p

AIC = Nlog(SSE/N) + 2p + constant
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Information and Uncertainty

e coin at 50% odds has maximal uncertainty

e reflects my lack of knowledge of the physics

e many ways for 50% heads.

e an election with p = 0.99 has a lot of Information

information is the reduction in uncertainty from learning
an outcome
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Information Entropy, a measure of
uncertainty

Desiderata:
- must be continuous so that there are no jumps

- must be additive across events or states, and must
increase as the number of events/states increases

H(p) = — E, [log(p)] = — / p(e)og(p(z))dz OR — 3 pilog(p)
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Entropy for coin fairness

H(p) = —Ey[log(p)] = —p * log(p) — (1 — p) * log(1 — p)
def h(p):
if p==1.:
ent = 0
elif p==0.:
ent = 0
else:
ent = - (p*math.log(p) + (1-p)* math.log(l-p))

0.3

0.2

0.1

0.0
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Maximum Entropy (MAXENT)

e finding distributions consistent with constraints
and the current state of our information

 what would be the least surprising distribution?
e The one with the least additional assumptions?

The distribution that can happen in the most ways is
the one with the highest entropy
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For a gaussian

1
p(z) = T

o~ (z—h)" /207

H(p) = Eyllog(p)] = E, |~ 5 log(2m0”) — (z — u)? /20°]

1 1 1 1 1
— ——l 2 . — —E — . _ — — : _——_— = — :
5 og(2mo*) 53 ol — )7 2log(27m ) 5 2log(271'ec7 )
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Cross Entropy

H(p,q) = —E,[log(q))

Then one can write:

Dkr(p,q) = H(p,q) — H(p)

KL-Divergence is additional entropy introduced by
using g instead of p.

We saw this for Logistic regression
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* H(p,q) and Dgry (p, q) are not symmetric.

e |f you use a unusual, low entropy distribution to
approximate a usual one, you will be more

surprised than if you used a high entropy, many
choices one to approximate an unusual one.

Corollary: if we use a high entropy
distribution to approximate the true
one, we Will incur lesser error.
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Gaussian is MAXENT for fixed mean and

variance
Consider
D1 (q,p) = E4llog(q/p)] = H(q,p) — H(q) >=0
H(q,p) = E,llog(p)] = —%log(%fz) 2; Ey[(z — p)?]

E,[(z — p)?] is CONSTRAINED to be o°.

= —%log(Zwecﬁ) = H(p) >= H(qg)!!!

1 1
H@M=—jw®®@—§
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Importance of MAXENT

e most common distributions used as likelihoods (and
priors) are in the exponential family, MAXENT
subject to different constraints.

e gamma: MAXENT all distributions with the same
mean and same average logarithm.

e exponential: MAXENT all non-negative continuous
distributions with the same average inter-event
displacement
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Importance of MAXENT

e |Information entropy enumerates the number of

ways a distribution can arise, after having fixed
some assumptions.

e choosing a maxent distribution as a likelihood

means that once the constraints has been met, no
additional assumptions.

The most conservative distribution
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MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)

e "Squeeze" linear regression through a Sigmoid
function

e this bounds the output to be a probability

e What is the sampling Distribution?
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Sigmoid function

This function is plotted below:

h = lambda z: 1./(14+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x and h(w - x)
with the probability that the
sampleisa'l' (y = 1).
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Then, the conditional probabilitiesof y =1 ory =0
given a particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y =0|x) =1 — h(w - x).

These two can be written together as
P(y|x,w) = h(w - x)¥(1 — h(w - x))' ¥

BERNOULLI!"
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Multiplying over the samples we get:

P(y|x,w) = P{y; }{x;},w) = H P(y;|x;, w) = H h(w-x;)% (1 — h(w- xi))(l—y,-)

A noisy y is to imagine that our data D was generated
from a joint probability distribution P(x,y). Thus we

need to model y at a given z, written as P(y | ), and
since P(x) is also a probability distribution, we have:

P(z,y) = P(y | =z)P(z),
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Indeed its important to realize that a particular
sample can be thought of as a draw from some "true"

probability distribution.

maximum likelihood estimation maximises the
likelihood of the sampley,

L=Py|=x,w)
Again, we can equivalently maximize

£ =log(P(y | x,w))
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Thus

e_log(Hh wox;) (1= h(w - x;))" ))

y, €D

— Z log (h(W - %)% (1 — h(w - Xi))(l—yz-))

;Y.: logh(w - x;)% + log (1 — h(wW Xz))( Yi)
= Y (yilog(h(w-x)) + (1 — y;)log(1 — h(w - x)))

Use Convex optimization! (soon, hw)
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