
Lecture 6

Risk and Informa.on Theory



Last Time:

• Normal MLE and Regression

• Test Sets

• Valida7on and X-valida7on

• Regulariza7on



Today

• Risk and Bayes Risk

• The KL Divergence and Deviance

• In-sample penal;es: the AIC

• Entropy

• Maximum Likelihood and Entropy



UNDERFITTING (Bias)
vs OVERFITTING (Variance)



Sources of Variability

• sampling (induces varia2on in a mis-specified 
model)

• noise (the true 

• mis-specifica2on





Risk for a given h

Define: 

(we assume 0 mean finite-variance noise )



• Varying training sets make empirical  a 
stochas4c quan4ty, varying from one training set to 
another.

• This can be wri>en as:

• Average empirical risk over the training sets (a 
different model is fit on each set)



Bayes Risk

Its the minimum risk ANY model can achieve.

Want to get as close to it as possible.

Could infimum amongst all possible func4ons. 
OVERFITTING!

Instead restrict to a par.cular Hypothesis Set: .



Bayes Risk for Regression

where  is the "regression" func0on.

For 0 mean, finite variance, then, , the noise of , is the Bayes 
Risk, also called the irreducible error.





Empirical Risk Minimiza0on

• LLN suggests that we can replace the risk integral 
by a data sum and then minimize

• Assume  (use empirical distrib)

• Fit hypothesis , where  is our training 
sample.

•

• minimize to get best for 



For each  LLN implies convergence from empirical to 
actual.

Now,  becomes infimum over empirical 

risks. But again restrict to  otherwise overfi:ng!



• Varying training sets make empirical  a 
stochas4c quan4ty, varying from one training set to 
another.

• Thus average empirical risk over the training sets (a 
different model is fit on each set)

• Goal of Learning: Build a func4on whose risk is 
closest to Bayes Risk



. Then,

where  is the true genera-ng process 
and  has 0 mean and finite variance .





This is the bias variance decomposi2on for regression.

Or, wri'en as , this is

variance + bias , or 

estimation-error + approximation-error



• first term is variance, squared error of the various 
fit g's from the average g, the hairiness.

• second term is bias, how far the average g is from 
the original f this data came from.

• third term is the stochas-c noise, minimum error 
that this model will always have.



SMALL World vs BIG 
World

• Small World answers the 
ques-on: given a model class 
(i.e. a Hypothesis space, whats 
the best model in it). It 
involves parameters. Its model 
checking.

• BIG World compares model 
spaces. Its model comparison 
with or without 
"hyperparameters".



MODEL 
COMPARISON: A 

Large World 
approach



VALIDATION
• train-test not enough as we fit 

for  on test set and 
contaminate it

• thus do train-validate-test



CROSS-VALIDATION



REGULARIZATION: A 
SMALL WORLD 

APPROACH

Keep higher a-priori complexity and impose a

complexity penalty

on risk instead, to choose a SUBSET of . 
We'll make the coefficients small:





REGULARIZATION

As we increase , coefficients go 
towards 0.

Lasso uses  sets 

coefficients to exactly 0.



Regulariza*on with Cross-Valida*on



MODEL COMPARISON: In-sample 
es7ma7on

• Suppose we have a large-world subset of nested models. 

• .. thus the models have the same likelihood form

• would be nice to not have to spend data on valida;on sets

• and exploit the no;on that a nega;ve log likelihood is a 
loss

• we could use strength of effects

• but not really needed for predic;on



KL-Divergence

KL divergence measures distance/dissimilarity of the 
two distribu9ons  and .



Divergence: 
The addi(onal uncertainty 

induced by using probabili(es 
from one distribu(on to 

describe another distribu(on
- McElreath page 179



KL example

Bernoulli Distribu.on p with 
.

Try to approximate by . What 
parameter?

def kld(p,q):
    return p*np.log(p/q) + (1-p)*np.log((1-p)/(1-q))



Jensen's Inequality for convex :



KL-Divergence is always non-nega3ve

Jensen's inequality:

 (0 iff ).



MARS ATTACKS (Topps, 1962; Burton 1996)

.

Earth to predict Mars, less surprise on landing:  .



PROBLEM: we dont know distribu6on . If 
we did, why do inference?

SOLUTION: Use the empirical distribu8on
That is, approximate popula1on expecta1ons 

by sample averages.



Maximum Likelihood jus1fica1on

Minimizing KL-divergence  maximizing 

Which is exactly the log likelihood! MLE!



Model Comparison: Likelihood Ra4o

In the sample approxima0on we have:



MODEL COMPARISON: Deviance

You only need the sample averages of the logarithm 
of  and :

Define the deviance: , a LOSS ...



Example

Generate data from:

2 parameter model.

Generate 10,000 realiza.ons, for 1-5 parameters, 20 
data points and 100 data points.

Split into train and test, and do OLS.



Train and Test Deviances



Train and Test Deviances

The test set deviances are  above the training set 
ones.



Akake Informa(on Criterion:

AIC es#mates out-of-sample deviance

• Assump'on: likelihood is approximately 
mul'variate gaussian.

• penalized log-likelihood or risk if we choose to 
iden'fy our distribu'on with the likelihood: 
REGULARIZATION



AIC for Linear Regression

 where 



Informa(on and Uncertainty

• coin at 50% odds has maximal uncertainty

• reflects my lack of knowledge of the physics

• many ways for 50% heads.

• an elec=on with  has a lot of Informa=on

informa(on is the reduc(on in uncertainty from learning 
an outcome



Informa(on Entropy, a measure of 
uncertainty

Desiderata:
- must be con2nuous so that there are no jumps
- must be addi2ve across events or states, and must 
increase as the number of events/states increases



Entropy for coin fairness

def h(p):
    if p==1.:
        ent = 0
    elif p==0.:
        ent = 0
    else:
        ent = - (p*math.log(p) + (1-p)* math.log(1-p))



Maximum Entropy (MAXENT)

• finding distribu-ons consistent with constraints 
and the current state of our informa-on

• what would be the least surprising distribu-on?

• The one with the least addi-onal assump-ons?

The distribu,on that can happen in the most ways is 
the one with the highest entropy



For a gaussian



Cross Entropy

Then one can write:

KL-Divergence is addi0onal entropy introduced by 
using  instead of .

We saw this for Logis/c regression



•  and  are not symmetric.

• if you use a unusual , low entropy distribu7on to 
approximate a usual one, you will be more 
surprised than if you used a high entropy, many 
choices one to approximate an unusual one.

Corollary: if we use a high entropy 
distribu6on to approximate the true 

one, we will incur lesser error.



Gaussian is MAXENT for fixed mean and 
variance

Consider 

 is CONSTRAINED to be .



Importance of MAXENT

• most common distribu.ons used as likelihoods (and 

priors) are in the exponen.al family, MAXENT 

subject to different constraints.

• gamma: MAXENT all distribu.ons with the same 

mean and same average logarithm.

• exponen.al: MAXENT all non-nega.ve con.nuous 

distribu.ons with the same average inter-event 

displacement



Importance of MAXENT

• Informa)on entropy enumerates the number of 
ways a distribu)on can arise, a8er having fixed 
some assump)ons.

• choosing a maxent distribu)on as a likelihood 
means that once the constraints has been met, no 
addi)onal assump)ons.

The most conserva.ve distribu.on 



MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid 
func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?



Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy:  and  
with the probability that the 
sample is a '1' ( ).



Then, the condi,onal probabili,es of  or  
given a par,cular sample's features  are:

These two can be wri/en together as

BERNOULLI!!



Mul$plying over the samples we get:

A noisy  is to imagine that our data  was generated 
from a joint probability distribu7on . Thus we 
need to model  at a given , wri<en as , and 
since  is also a probability distribu7on, we have:



Indeed its important to realize that a par1cular 
sample can be thought of as a draw from some "true" 
probability distribu1on.

 maximum likelihood es$ma$on maximises the 
likelihood of the sample y,

Again, we can equivalently maximize



Thus

Use Convex op+miza+on! (soon, hw)


