Lecture 5 Regression Modelling And Information Theory

Last Time:

- Small World vs Big World
- MLE and Sampling
- Gaussian MLE
- Fitting without Noise
- What is noise?
- Fitting with Noise
- Test sets

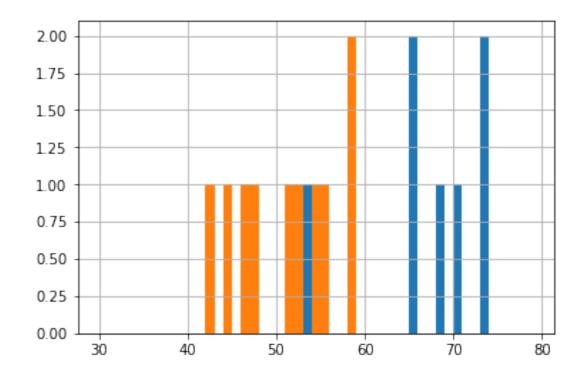
Today

- More on significance
- Test Sets
- Validation and X-validation
- Regularization
- The KL Divergence and Deviance
- In-sample penalties: the AIC

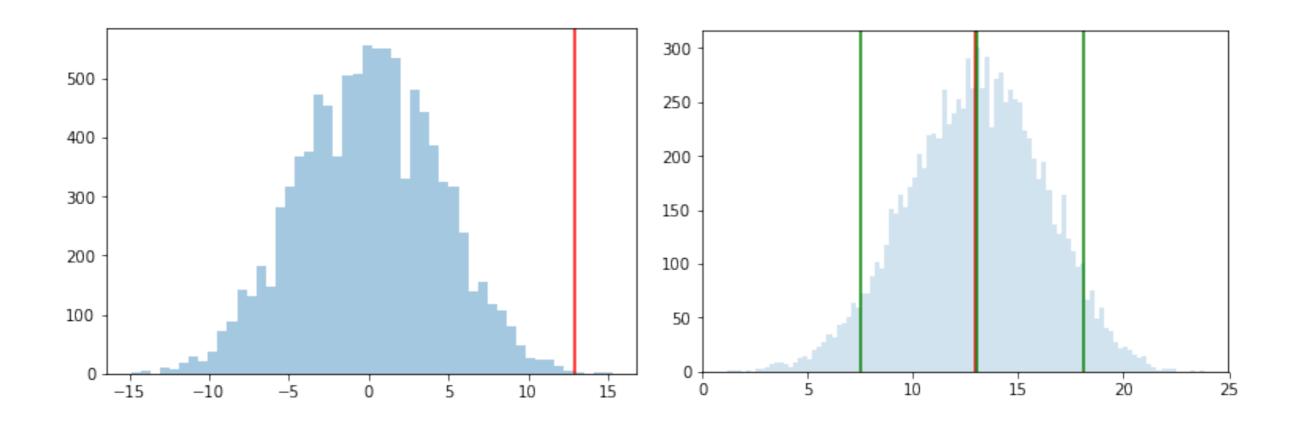
0 54 P 1 51 P 2 58 P 3 44 P 4 55 P 5 52 P 6 42 P 7 47 P 8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D 747 75 D			dosage	label
2 58 P 3 44 P 4 55 P 5 52 P 5 42 P 7 47 P 8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 13 70 D 14 73 D 15 68 D		0	54	Р
3 44 P 4 55 P 5 52 P 6 42 P 7 47 P 8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 13 70 D 14 73 D 15 68 D		1	51	Р
 4 55 P 52 P 6 42 P 7 47 P 8 58 P 9 46 P 16 52 D 16 52 D 		2	58	Р
5 52 P 6 42 P 7 47 P 8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 13 70 D 14 73 D 15 68 D		3	44	Р
6 42 P 7 47 P 8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		4	55	Р
7 47 P 8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		5	52	Р
8 58 P 9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		6	42	Р
9 46 P 10 54 D 11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		7	47	Р
10 54 D 11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		8	58	Р
11 73 D 12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		9	46	Р
12 53 D 13 70 D 14 73 D 15 68 D 16 52 D		10	54	D
13 70 D 14 73 D 15 68 D 16 52 D		11	73	D
14 73 D 15 68 D 16 52 D AM 207 65 D		12	53	D
15 68 D 16 52 D AM 207 ¹⁷ 65 D		13	70	D
16 52 D AM 207 ¹⁷ 65 D		14	73	D
AM 207 ¹⁷ 65 D		15	68	D
WAIVI 207		16	52	D
	₩AM 20	717	65	D
	Ψ.	18	65	D

Dose vs Placebo

Actual mean effect is about 13.



Significance vs Size of Effect



Left, permute all labels. Right, sample with replacement within groups.



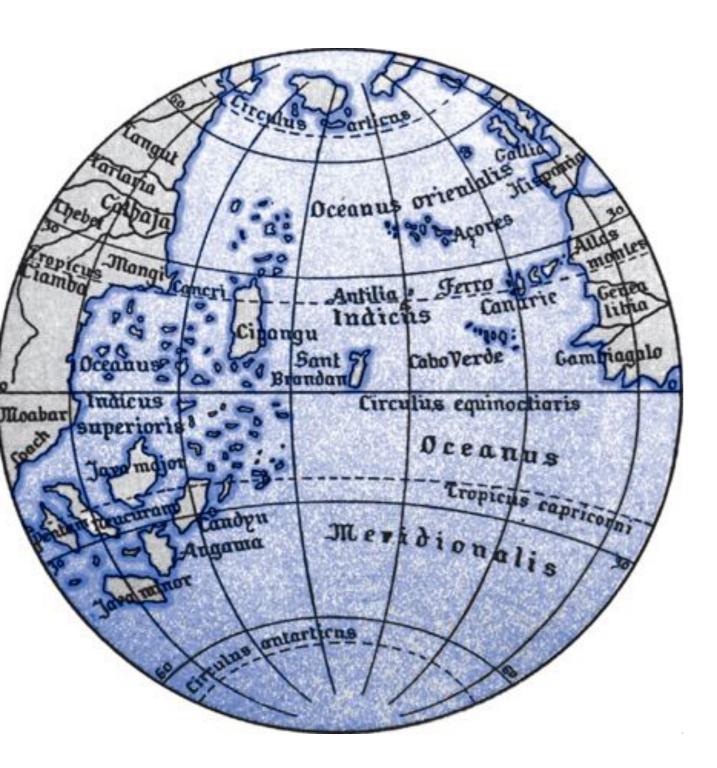
HYPOTHESIS SPACES

A polynomial looks so:

$$h(x)= heta_0+ heta_1x^1+ heta_2x^2+\ldots+ heta_nx^n=\sum_{i=0}^n heta_ix^i$$

All polynomials of a degree or complexity *d* constitute a hypothesis space.

$$\mathcal{H}_{\mathtt{l}}:h_{\mathtt{l}}(x)= heta_{\mathtt{o}}+ heta_{\mathtt{l}}x$$

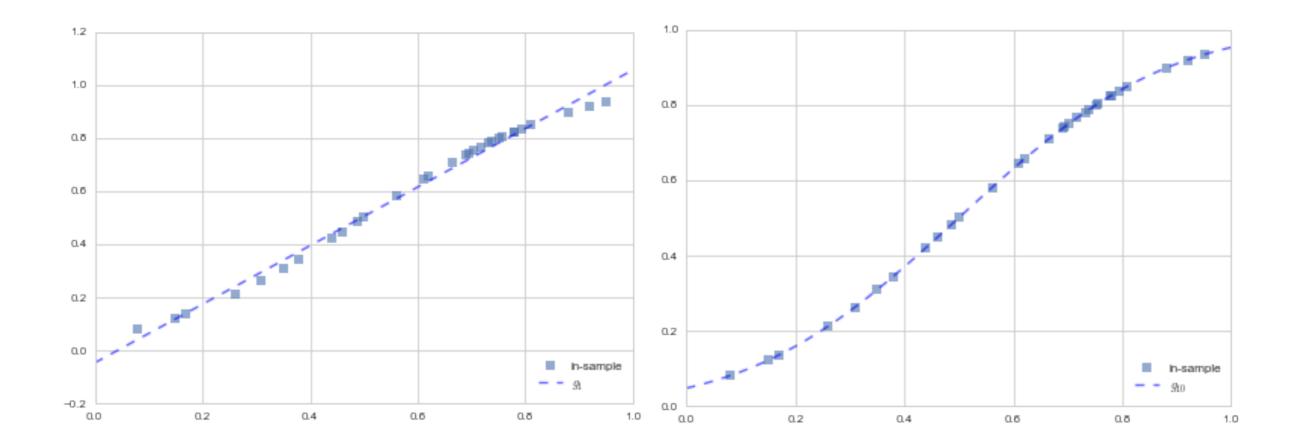


SMALL World vs BIG World

- Small World answers the question: given a model class (i.e. a Hypothesis space, whats the best model in it). It involves parameters. Its model checking.
- BIG World compares model spaces. Its model comparison with or without "hyperparameters".

Without Noise...

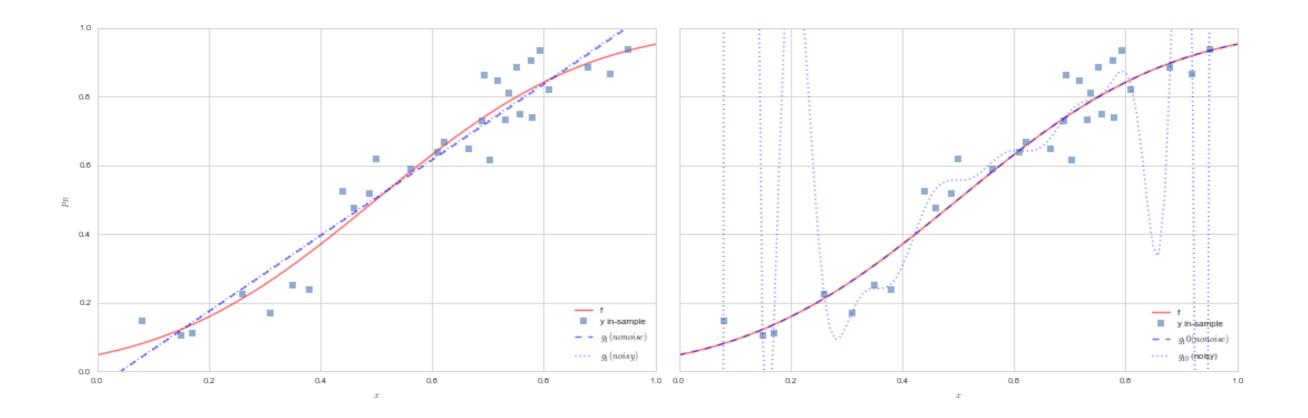
30 points of data. Which fit is better? Line in \mathcal{H}_1 or curve in \mathcal{H}_{20} ?



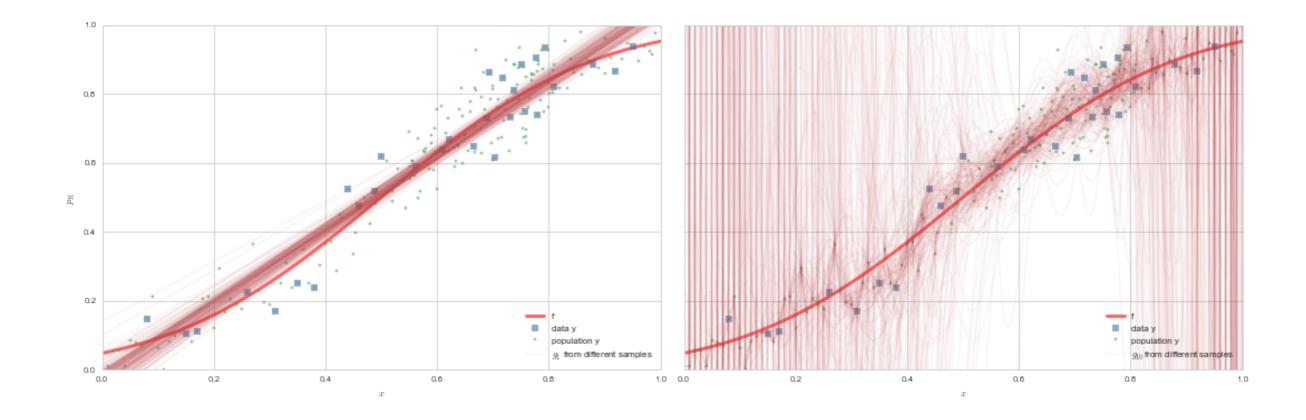
THE REAL WORLD HAS NOISE

Which fit is better now?

The line or the curve?



UNDERFITTING (Bias) vs OVERFITTING (Variance)



Every model has Bias and Variance

$$R_{out}(h)=E_{p(x)}[(h(x)-y)^2]=\int dx p(x)(h(x)-f(x)-\epsilon)^2.$$

Fit hypothesis $h = g_{\mathcal{D}}$, where \mathcal{D} is our training sample.

Define:

$$\langle R
angle = \int dy dx \, p(x,y) (h(x)-y)^2 = \int dy dx p(y \mid x) p(x) (h(x)-y)^2.$$



 $egin{aligned} \langle R
angle &= E_{\mathcal{D}}[R_{out}(g_{\mathcal{D}})] = E_{\mathcal{D}}E_{p(x)}[(g_{\mathcal{D}}(x)-f(x)-\epsilon)^2] \ &ar{g} = E_{\mathcal{D}}[g_{\mathcal{D}}] = (1/M)\sum_{\mathcal{D}}g_{\mathcal{D}} \end{aligned}$

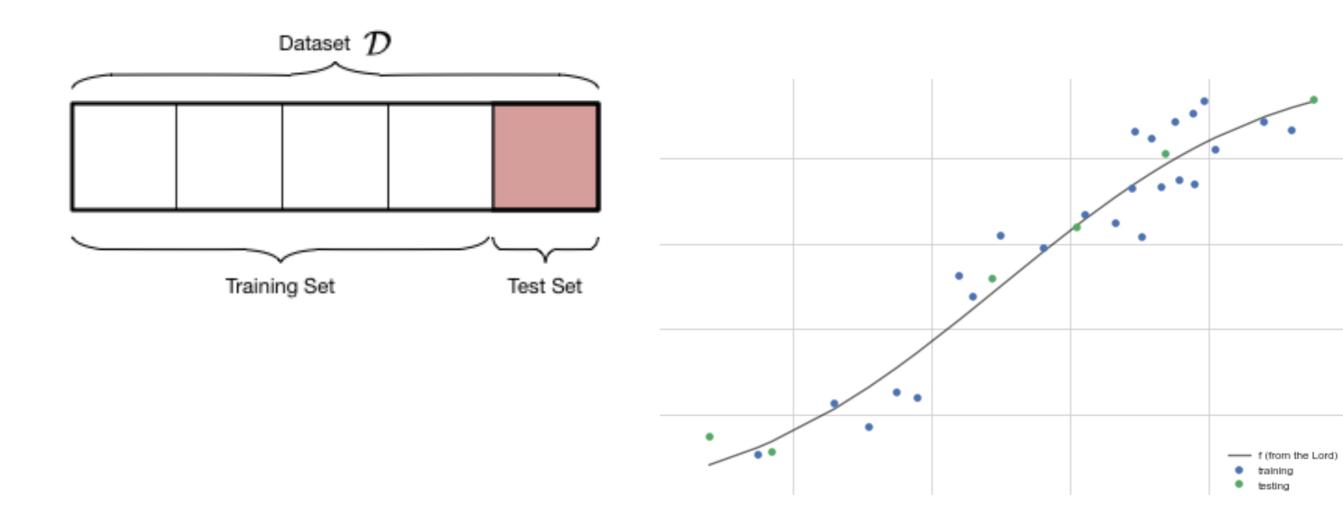
Then,

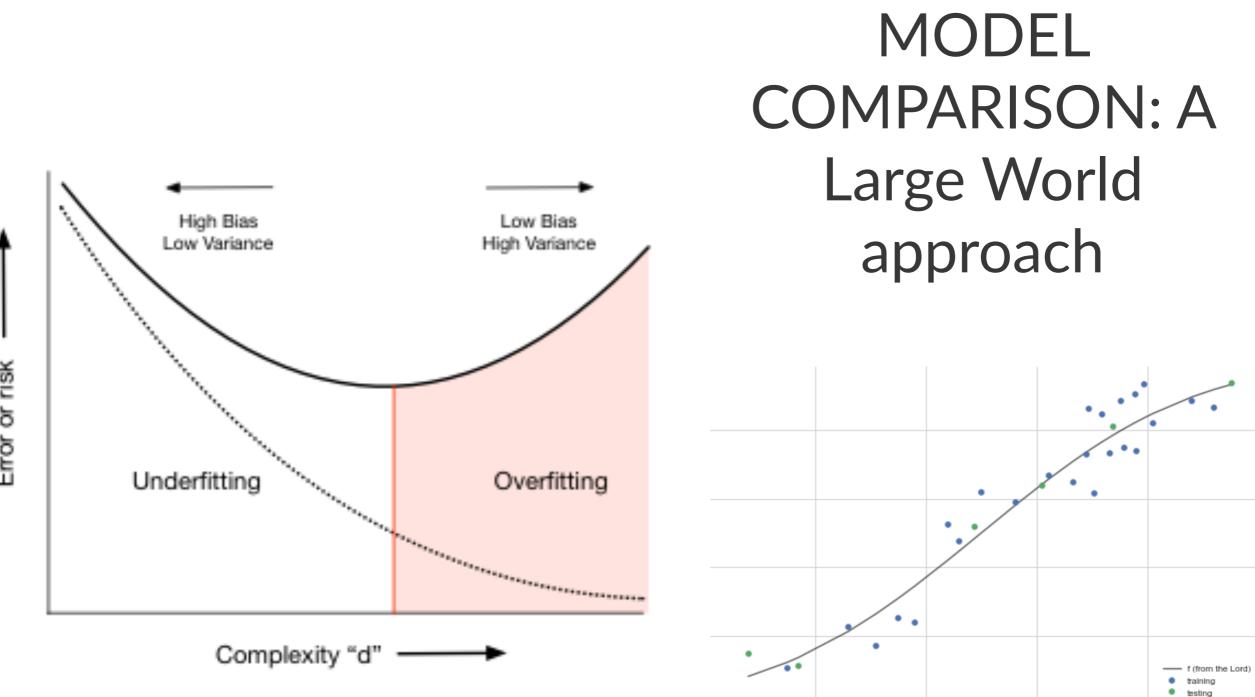
$$\langle R
angle = E_{p(x)} [E_{\mathcal{D}} [(g_{\mathcal{D}} - ar{g})^2]] + E_{p(x)} [(f - ar{g})^2] + \sigma^2$$

This is the bias variance decomposition for regression.

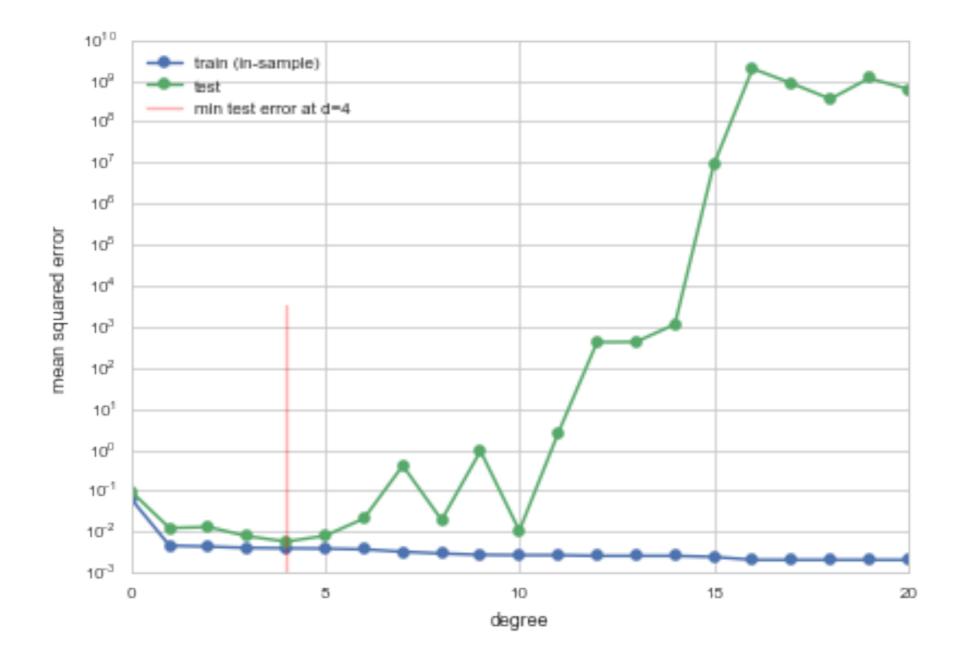
- first term is **variance**, squared error of the various fit g's from the average g, the hairiness.
- second term is **bias**, how far the average g is from the original f this data came from.
- third term is the **stochastic noise**, minimum error that this model will always have.

TRAIN AND TEST





We "fit" for d



Do we still have a test set?

Trouble:

- no discussion on the error bars on our error estimates
- "visually fitting" a value of $d \implies$ contaminated test set.

The moment we **use it in the learning process, it is not a test set**.

Hoeffding's inequality

population fraction μ , sample drawn with replacement, fraction ν :

$$P(|
u-\mu|>\epsilon)\leq 2e^{-2\epsilon^2N}$$

For hypothesis h, identify 1 with $h(x_i) \neq f(x_i)$ at sample x_i . Then μ, ν are population/sample error rates. Then,

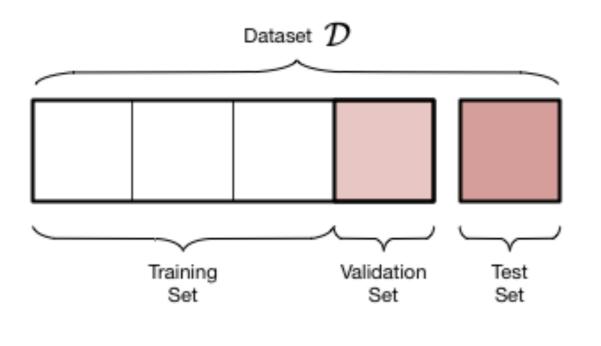
$$P(|R_{in}(h)-R_{out}(h)|>\epsilon)\leq 2e^{-2\epsilon^2N}$$

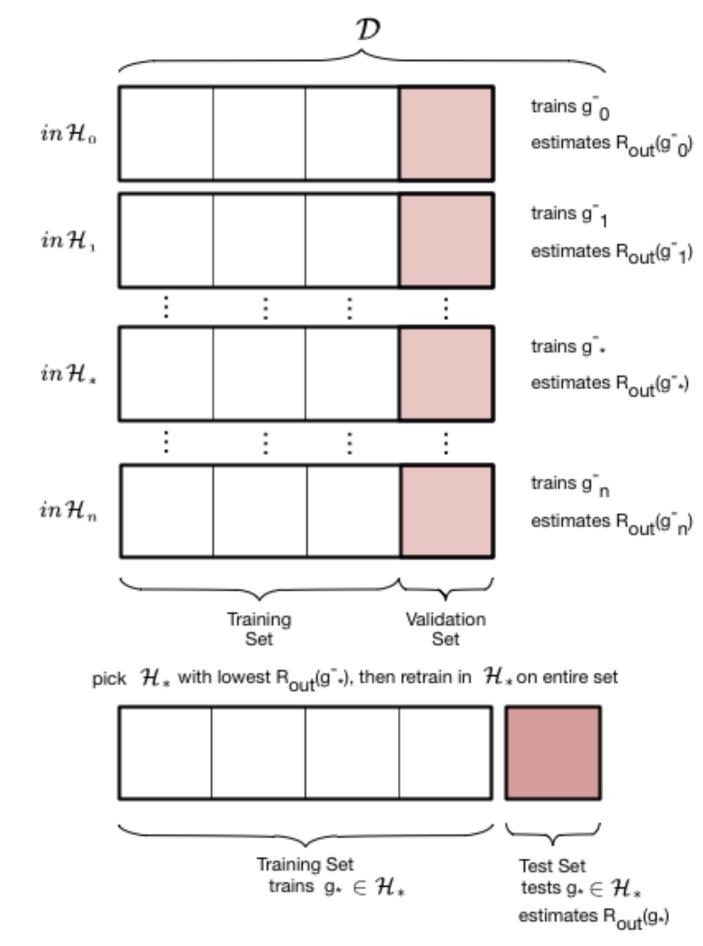
- Hoeffding inequality holds ONCE we have picked a hypothesis *h*, as we need it to label the 1 and 0s.
- But over the training set we one by one pick all the models in the hypothesis space
- best fit g is among the h in H, g must be h₁ OR h₂
 OR....Say effectively M such choices:

$$P(|R_{in}(g)-R_{out}(g)|\geq\epsilon)<=\sum_{h_i\in\mathcal{H}}P(|R_{in}(h_i)-R_{out}(h_i)|\geq\epsilon)<=2\,M\,e^{-2\epsilon^2N}$$

VALIDATION

- train-test not enough as we fit for d on test set and contaminate it
- thus do train-validate-test





usually we want to fit a hyperparameter

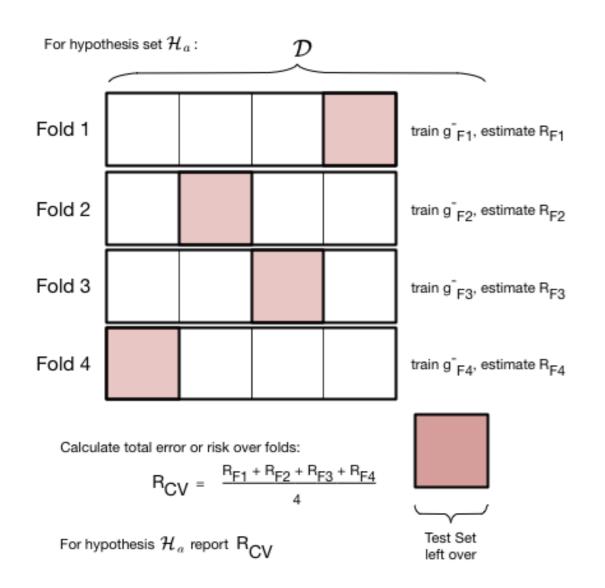
- we **wrongly** already attempted to fit *d* on our previous test set.
- choose the d, g* combination with the lowest validation set risk.
- $R_{val}(g^{-*}, d^*)$ has an optimistic bias since d effectively fit on validation set
- its Hoeffding bound must now take into account the grid-size as the effective size of the hypothesis

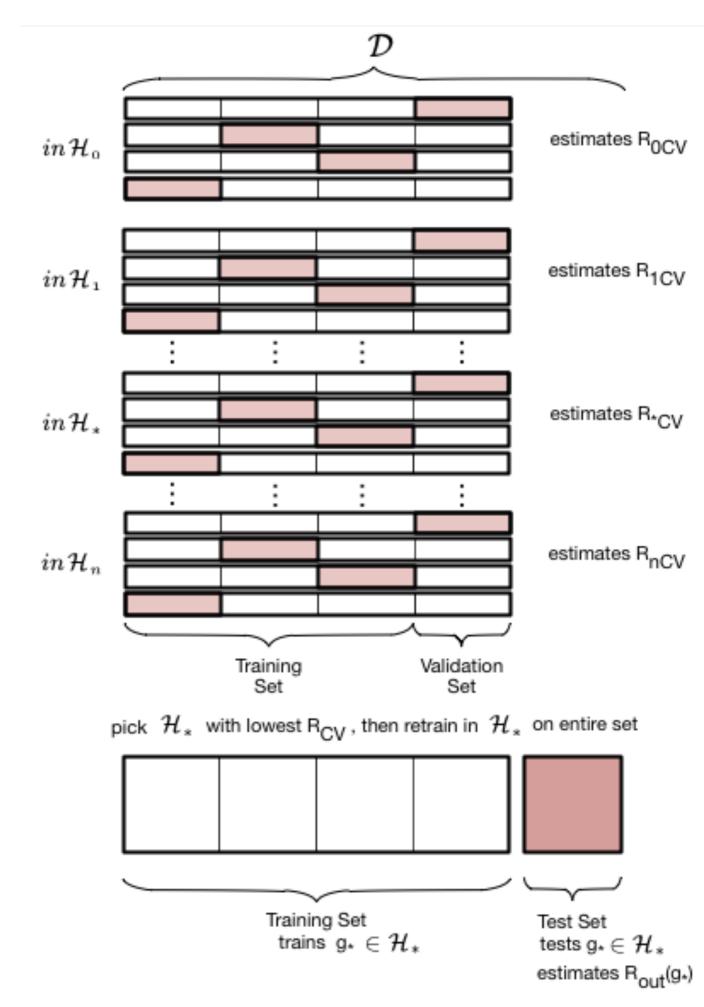
• this size from hyperparameters is typically a smaller size than that from parameters.

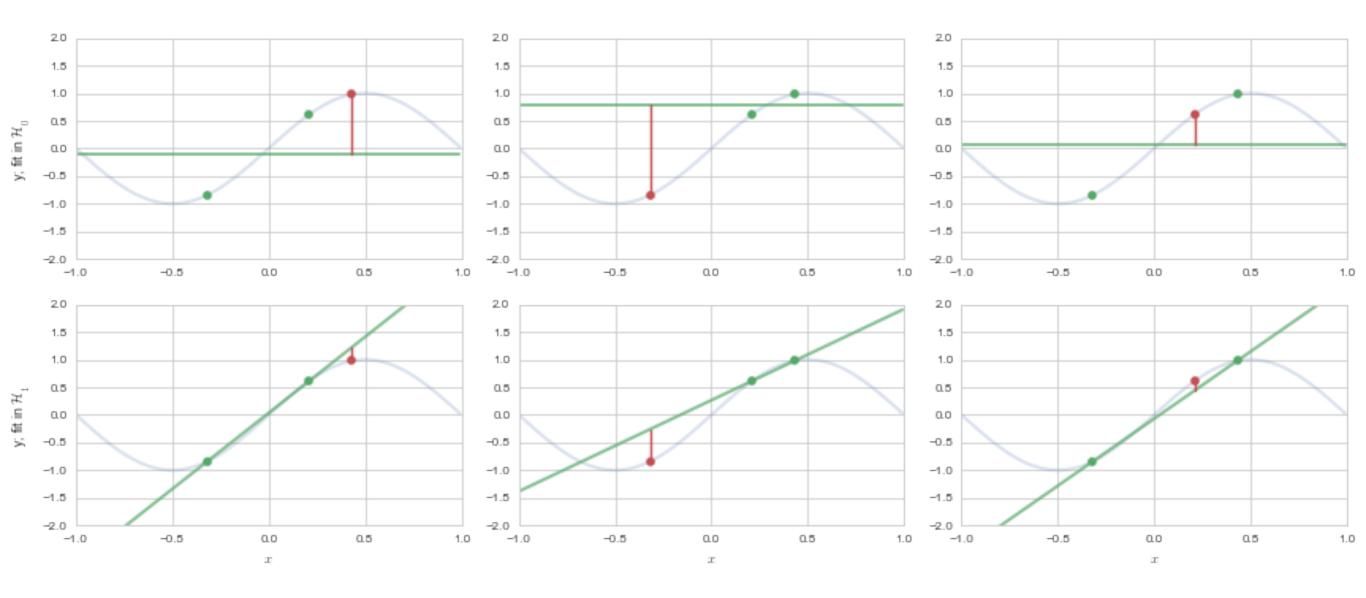
Retrain on entire set!

- finally retrain on the entire train+validation set using the appropriate (g^{-*}, d^*) combination.
- works as training for a given hypothesis space with more data typically reduces the risk even further.
- test set has a M of 1!

CROSS-VALIDATION





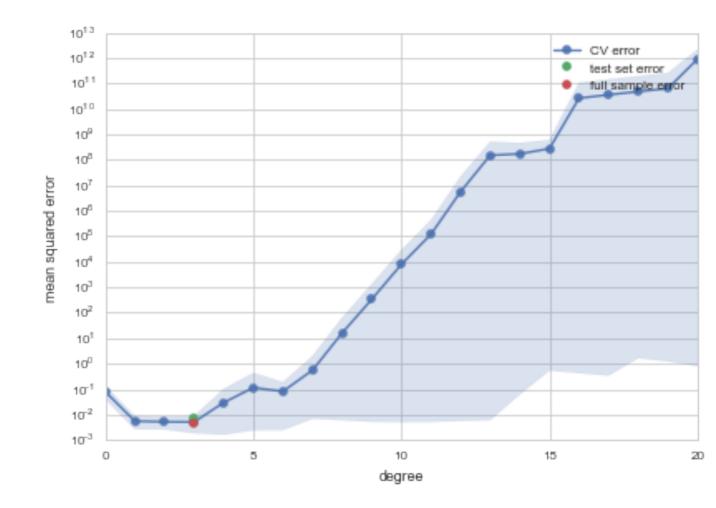


CROSS-VALIDATION

is

- a resampling method
- robust to outlier validation set
- allows for larger training sets
- allows for error estimates

Here we find d = 3.



Cross Validation considerations

- validation process as one that estimates R_{out} directly, on the validation set. It's critical use is in the model selection process.
- once you do that you can estimate R_{out} using the test set as usual, but now you have also got the benefit of a robust average and error bars.
- key subtlety: in the risk averaging process, you are actually averaging over different g⁻ models, with different parameters.

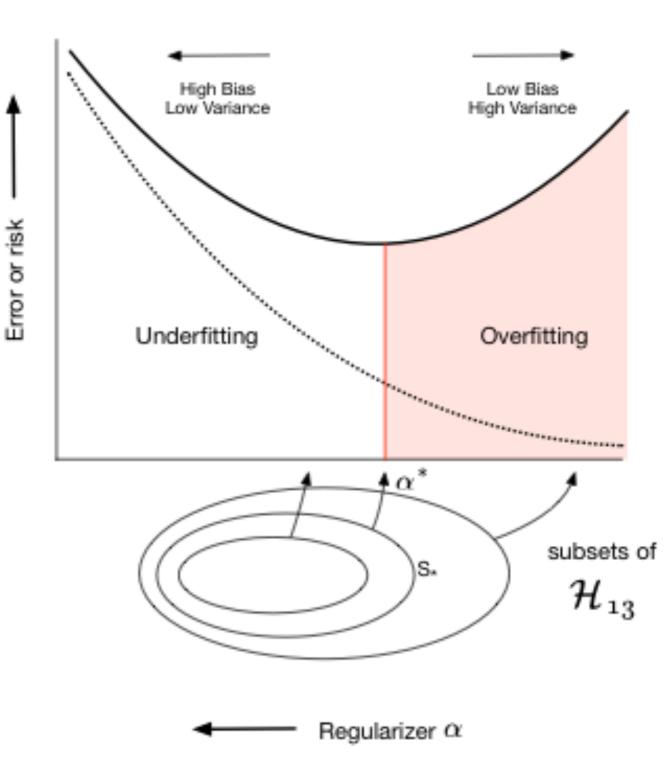
REGULARIZATION: A SMALL WORLD APPROACH

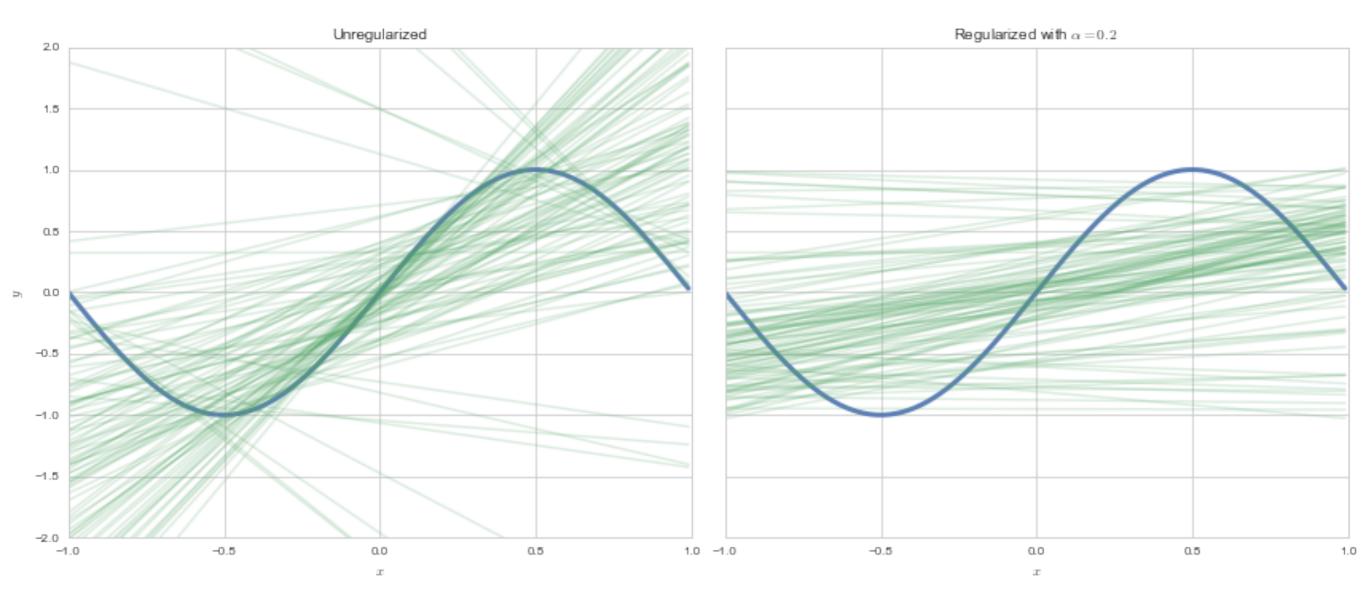
Keep higher a-priori complexity and impose a

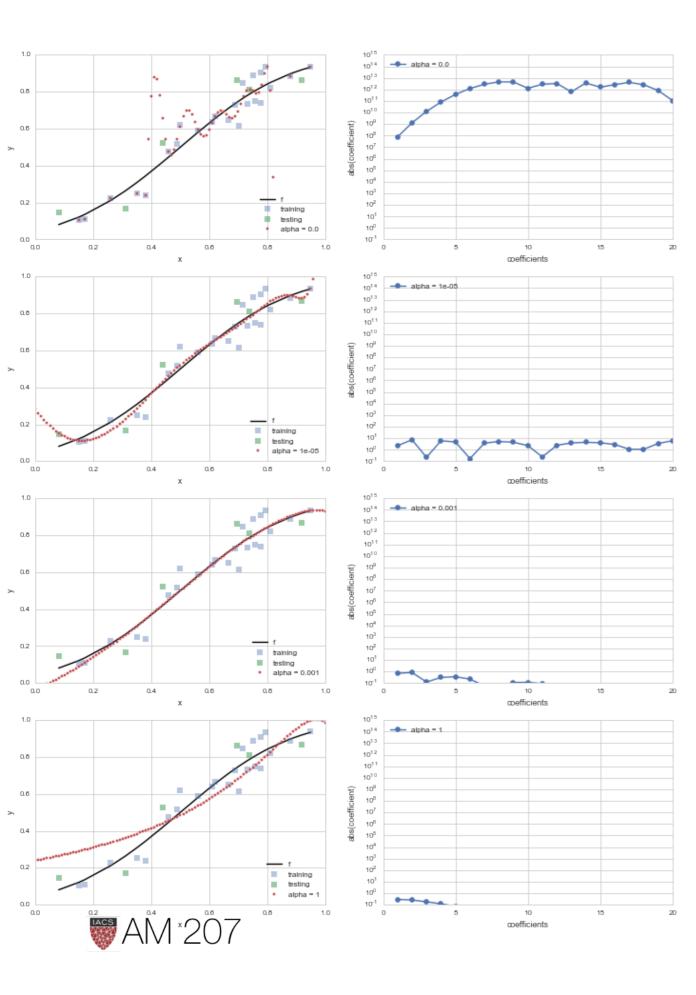
complexity penalty

on risk instead, to choose a SUBSET of \mathcal{H}_{big} . We'll make the coefficients small:

$$\sum_{i=0}^{j} heta_{i}^{2} < C$$



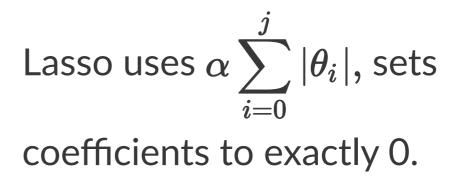




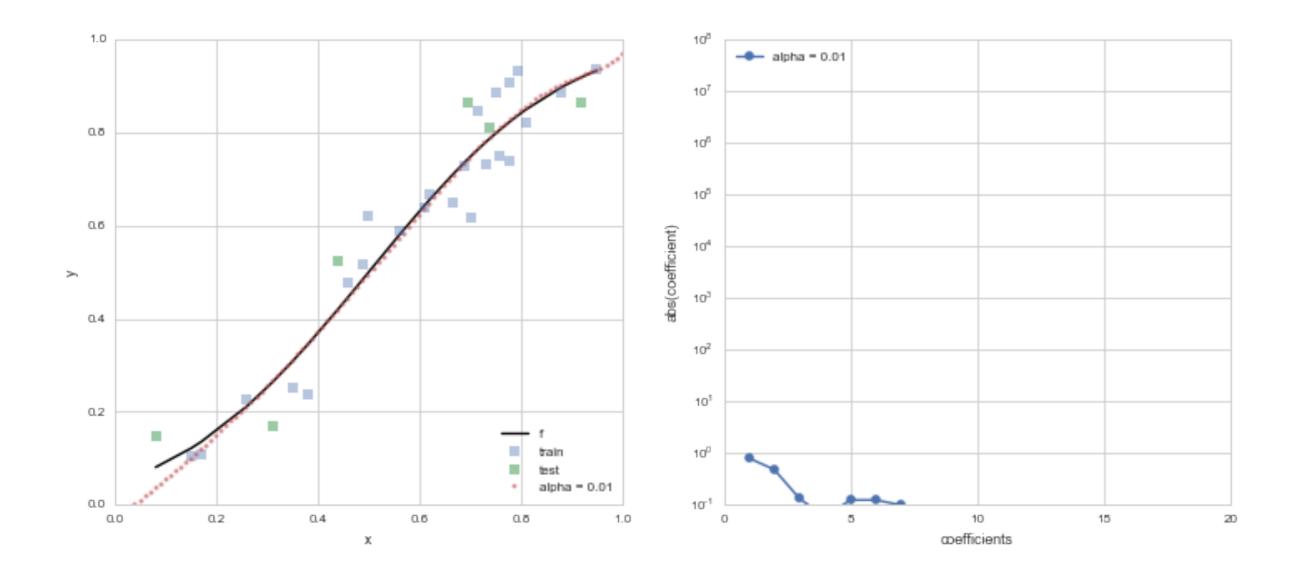
REGULARIZATION

$$\mathcal{R}(h_j) = \sum_{y_i \in \mathcal{D}} (y_i - h_j(x_i))^2 + lpha \sum_{i=0}^j heta_i^2.$$

As we increase α , coefficients go towards 0.



Regularization with Cross-Validation



MODEL COMPARISON: In-sample estimation

- Suppose we have a large-world subset of nested models.
- .. thus the models have the same likelihood form
- would be nice to not have to spend data on validation sets
- and exploit the notion that a negative log likelihood is a loss
- we could use strength of effects
- but not really needed for prediction

KL-Divergence

$$egin{aligned} D_{KL}(p,q) &= E_p[log(p) - log(q)] = E_p[log(p/q)] \ &= \sum_i p_i log(rac{p_i}{q_i}) \, \, or \, \int dPlog(rac{p}{q}) \end{aligned}$$

$$D_{KL}(p,p)=0$$

KL divergence measures distance/dissimilarity of the two distributions p(x) and q(x).

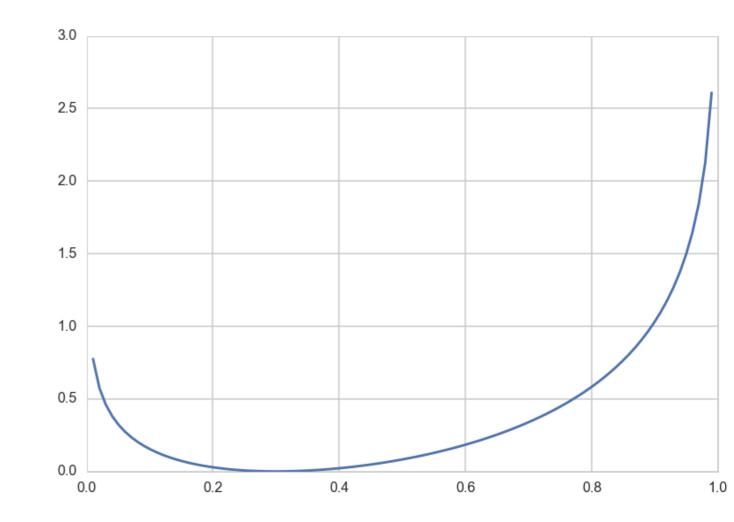
Divergence: The additional uncertainty indiced by using probabilities from one distribution to describe another distribution - McElreath page 179

KL example

Bernoulli Distribution p with p = 0.3.

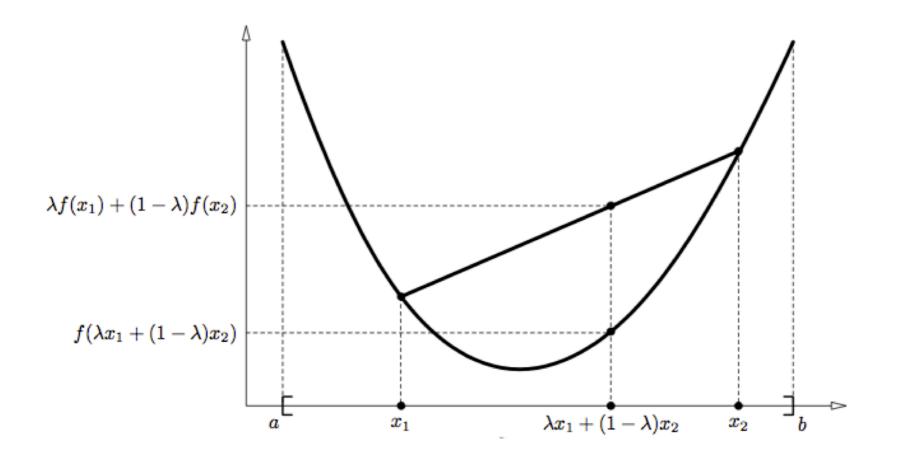
Try to approximate by *q*. What parameter?

def kld(p,q):
 return p*np.log(p/q) + (1-p)*np.log((1-p)/(1-q))



Jensen's Inequality for convex f(x):

$E[f(X)] \geq f(E[X])$



KL-Divergence is always non-negative

Jensen's inequality:

$$egin{aligned} &\longrightarrow D_{KL}(p,q) \geq 0 ext{ (0 iff } q = p \ orall x). \ &D_{KL}(p,q) = E_p[log(p/q)] = E_p[-log(q/p)] \geq -\log(E_p[q/p]) = \ &-\log(\int dQ) = 0 \end{aligned}$$

MARS ATTACKS (Topps, 1962; Burton 1996)

 $Earth: q = \{0.7, 0.3\}, Mars: p = \{0.01, 0.99\}.$

Earth to predict Mars, less surprise on landing: $D_{KL}(p,q) = 1.14, D_{KL}(q,p) = 2.62$.

PROBLEM: we dont know distribution *p*. If we did, why do inference?

SOLUTION: Use the empirical distribution That is, approximate population expectations by sample averages.

$$\implies D_{KL}(p,q) = E_p[log(p/q)] = rac{1}{N}\sum_i log(p_i/q_i)$$

Maximum Likelihood justification

$$D_{KL}(p,q) = E_p[log(p/q)] = rac{1}{N}\sum_i (log(p_i) - log(q_i))$$

$\begin{array}{l} \text{Minimizing KL-divergence} \implies \text{maximizing} \\ \sum_{i} log(q_i) \end{array}$

Which is exactly the log likelihood! MLE!

Model Comparison: Likelihood Ratio

$$D_{KL}(p,q)-D_{KL}(p,r)=E_p[log(r)-log(q)]=E_p[log(rac{r}{q})]$$

In the sample approximation we have:

$$D_{KL}(p,q) - D_{KL}(p,r) = rac{1}{N} \sum_{i} log(rac{r_i}{q_i}) = rac{1}{N} log(rac{\prod_i r_i}{\prod_i q_i}) = rac{1}{N} log(rac{\mathcal{L}_r}{\mathcal{L}_q})$$

MODEL COMPARISON: Deviance

You only need the sample averages of the logarithm of *r* and *q*:

$$D_{KL}(p,q) - D_{KL}(p,r) = \langle log(r)
angle - \langle log(q)
angle$$

Define the deviance: $D(q) = -2\sum_i log(q_i)$, a **LOSS** ...

$$D_{KL}(p,q)-D_{KL}(p,r)=rac{2}{N}(D(q)-D(r))$$

Example

Generate data from:

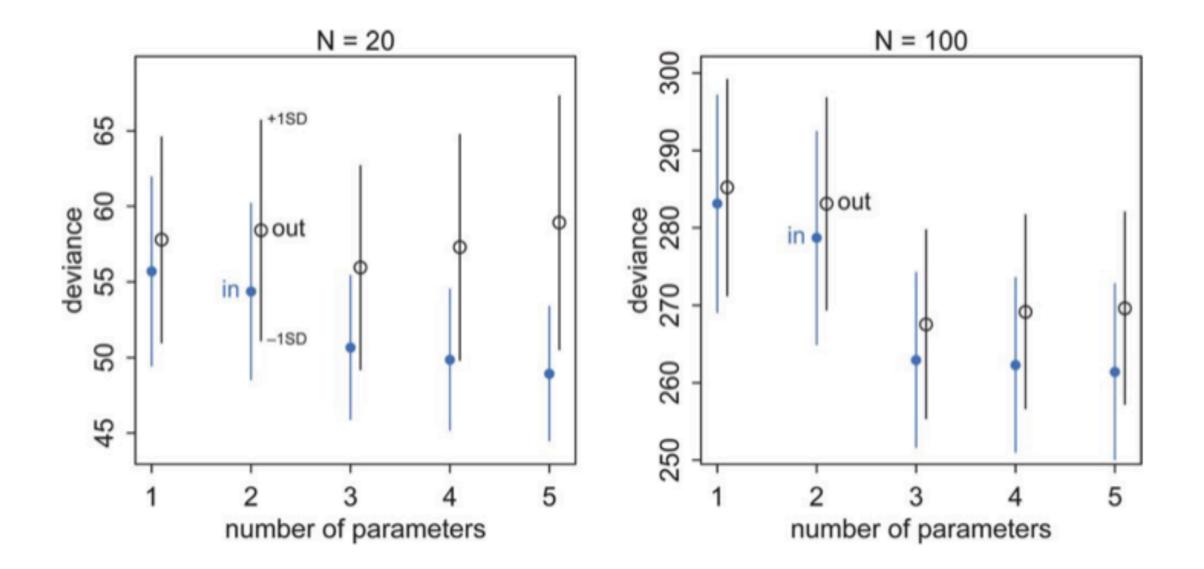
$$\mu_i = 0.15 x_{1,i} - 0.4 x_{2,i}, \; y \sim N(\mu,1)$$

2 parameter model.

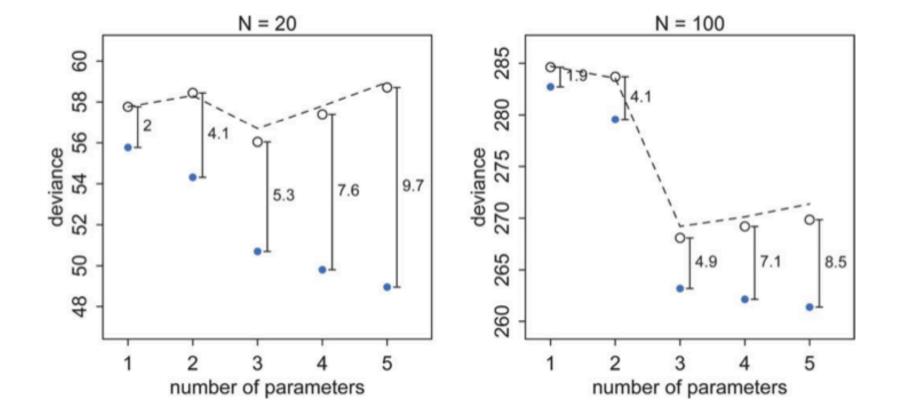
Generate 10,000 realizations, for 1-5 parameters, 20 data points and 100 data points.

Split into train and test, and do OLS.

Train and Test Deviances



Train and Test Deviances



The test set deviances are 2 * p above the training set ones.

Akake Information Criterion:

AIC estimates out-of-sample deviance

$$AIC = D_{train} + 2p$$

- Assumption: likelihood is approximately multivariate gaussian.
- penalized log-likelihood or risk if we choose to identify our distribution with the likelihood: REGULARIZATION

AIC for Linear Regression

$$AIC = D_{train} + 2p$$
 where $D(q) = -2\sum_i log(q_i) = -2\ell$

$$\sigma^2_{MLE} = rac{1}{N}SSE$$

$$AIC = -2(-rac{N}{2}(log(2\pi) + log(\sigma^2)) - 2(-rac{1}{2\sigma_{MLE}^2} imes SSE) + 2p$$

AIC = Nlog(SSE/N) + 2p + constant

