Lecture 5

Regression Modelling And
Information Theory
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Last Time:

e Small World vs Big World
e MLE and Sampling

e Gaussian MLE

o Fitting without Noise

e What is noise?

o Fitting with Noise

e Jest sets
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Today

e More on significance

e Test Sets

e Validation and X-validation

e Regularization

e The KL Divergence and Deviance

e |n-sample penalties: the AIC
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dosage label

0 54 P
e Dose vs Placebo
2 58 P
3 4 P Actual mean effect is about 13.
4 55 P
5 52 P 200 1
6 42 P 1
150 -
7 a7 P yo5 .
4 58 P 100 -
0.75 A
- 46 P
0.50 -
10 54 D 0.25 -
11 73 D . 20 50 60 70
12 53 D
13 70 D
14 73 D
15 68 D
16 52 D
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Significance vs Size of Effect

300 A

500 -
250 1

400 -
200 1

300
150 -

200 - 100 -

100 - 50 -

Left, permute all labels. Right, sample with
replacement within groups.
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HYPOTHESIS SPACES

A polynomial looks so:
h(z) =6y + 612" + O +... +0,2" = ) 6;a’
—0

All polynomials of a degree or complexity d constitute
a hypothesis space.

H, : hy(z) =6, + 6,2
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SMALL World vs BIG
World

Small World answers the
guestion: given a model class
(i.e. a Hypothesis space, whats
the best model in it). It
involves parameters. lts model
checking.

BIG World compares model
spaces. Its model comparison
with or without
"hyperparameters".



Without Noise...

30 points of data. Which fit is better? Line in H, or
curve in H,,?
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THE REAL WORLD HAS NOISE

Which fit is better now?
The line or the curve?
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)

@AM 207



Every model has Bias and Variance

Rout(h) = By [(h() — 9)?] = / dap(z) (h(z) — f(z) — ¢)?.

Fit hypothesis h = gp, where D is our training
sample.

Define:
(R) = / dyde p(z,4) (h(z) — 9)? = / dydeply | 2)p(a)(h(z) - )
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Then,

<R> — Ep(:l:) [ED[(gD — g)z]] + Ep(«’L’) [(f — 9)2] +0°

This is the bias variance decomposition for regression.
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e first term is variance, squared error of the various
fit g's from the average g, the hairiness.

e second term is bias, how far the average g is from
the original f this data came from.

e third term is the stochastic noise, minimum error
that this model will always have.
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TRAIN AND TEST
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Emor or risk ————»

Underfitting ™

MODEL
COMPARISON: A
o Large World
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We "fit" for d

10! 0
~&— train (n-sampie)
109 —— »at

10°

min fest error at d=-4

10
10°
10°
10*
10°
10°

mean squared error

10
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10!
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0 S 10 15 2
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Do we still have a test set?

Trouble:

e no discussion on the error bars on our error
estimates

e "visually fitting" a value of d — contaminated
test set.

The moment we use it in the learning process, it is
not a test set.
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Hoeffding's inequality

population fraction u, sample drawn with
replacement, fraction v:

P(lv — p| >€) <2e7 2N

For hypothesis h, identify 1 with h(z;) # f(z;) at
sample ;. Then u, v are population/sample error
rates. Then,

P(|Rin(h) — Rout (R)| > €) < 226N
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e Hoeffding inequality holds ONCE we have picked a
hypothesis h, as we need it to label the 1 and Os.

e But over the training set we one by one pick all the
models in the hypothesis space

e best fit g iIs among the h in H, g must be h; OR h,
OR....Say effectively M such choices:

P(|Rin(9) — Rout(9)| > €) <= Y P(|Rin(h:) — Rout(hi)| > €) <=2Me >N
hiEH
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VALIDATION

e train-test not enough as we fit
for d on test set and
contaminate it

e thus do train-validate-test

Dataset D
e N
—_ N
. A Y I _J
N Y Y
Training Validation Test
Set Set Set
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nH,

inH,

inH.,

inH,

—

trains @'

estimates Rout(g'o)

trains g'1

estimates R, +(9"1)

trains g .

estimates Rout(g'.)

trains g,

estimates Rout(g'n)

{ T

~
Training Validation
Set Set

pick H . with lowest Rout(g'.). then retrain in H . on entire set

|

—~— — \w_/
Training Set Test Set
trains g. € ‘H, testsg. & H.
estimates Rout(g‘)



usually we want to fit a hyperparameter

e we wrongly already attempted to fit d on our
previous test set.

e choose the d, g* combination with the lowest
validation set risk.

* R,u(g*,d") has an optimistic bias since d
effectively fit on validation set

e its Hoeffding bound must now take into account
the grid-size as the effective size of the hypothesis
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this size from hyperparameters is typically a smaller
size than that from parameters.

Retrain on entire set!

finally retrain on the entire train+validation set
using the appropriate (¢, d") combination.

works as training for a given hypothesis space with
more data typically reduces the risk even further.

test set has a M of 1!
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CROSS-VALIDATION

For hypothesis set H , : D
e
— ——
Fold 1 train g F4, estimate Rg4
Fold 2 train g f,, estimate R,
Fold 3 train g5, estimate Rgq
Fold 4 train g"p 4, estimate R,

Calculate total error or risk over folds:

REq * Rpp + Rpg + Ry

R =
Y P
For hypothesis H ,, report R cV ;I:f?to?z:
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mH,

'i'". H 1

inH.,

inH,

-~ N

estimates ROCV

estimates Fi1 cv

estimates R‘CV

estimates RnCV

“— J\_Y__J
~
Training Validation
Set Set

pick H. with lowest R, , then retrainin 7, on entire set

“ — 7 \w_/
Training Set Test Set
trains g. € H, testsg. = H.
estimates Rout(g‘)




y.ftnH

y.ftinH,

0.5
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CROSS-VALIDATION
IS

e aresampling method

e robust to outlier validation set
e allows for larger training sets

e allows for error estimates

Here we find d = 3.
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Cross Validation considerations

e validation process as one that estimates R,
directly, on the validation set. It's critical use is in
the model selection process.

e once you do that you can estimate R_,; using the
test set as usual, but now you have also got the
benefit of a robust average and error bars.

e key subtlety: in the risk averaging process, you are
actually averaging over different ¢g— models, with
different parameters.
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REGULARIZATION: A
SMALL WORLD
APPROACH

Keep higher a-priori complexity and impose a

complexity penalty

on risk instead, to choose a SUBSET of #,,,.
We'll make the coefficients small:

5:03 < C.
1=0
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Error or risk =i

e e
High Bias Low Bias
Low Vanance High Variance
Underfitting ™. Overfitting
o’
subsets of
Hig

44— Regularizer (x



Regularzed with o =0.2
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REGULARIZATION

J

R(hs) = D) (v — hj(:))* +a ) 62

As we increase a, coefficients go
towards O.

j

Lasso uses a Z 6; ], sets
i=0

coefficients to exactly O.



Regularization with Cross-Validation

1.0 10°
‘ ~&— alpha = 0.01
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MODEL COMPARISON: In-sample
estimation

e Suppose we have a large-world subset of nested models.
e ..thus the models have the same likelihood form
e would be nice to not have to spend data on validation sets

e and exploit the notion that a negative log likelihood is a
loss

e we could use strength of effects

e but not really needed for prediction
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KL-Divergence

Dk (p,q) = Ep[log(p) — log(q)] = Ejp[log(p/q)]
= sz-log(%) or /dPlog(E)

q

Dgkr(p,p) =0

KL divergence measures distance/dissimilarity of the
two distributions p(x) and g(x).
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Divergence:
The additional uncertainty
indiced by using probabilities
from one distribution to

describe another distribution
- McElreath page 179
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KL example

Bernoulli Distribution p with
p = 0.3.

Try to approximate by g. What
parameter?

def kld(p,q):
return p*np.log(p/q) + (1-p)*np.log((1-p)/(1-9))
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Jensen's Inequality for convex f(x):

E[f(X)] = f(E[X])

Af(z1) + (1= A)f(z2)

f(Azy + (1 — A)x2)
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KL-Divergence is always non-negative

Jensen's inequality:

—> Dk (p,q) > 0(0iff g = pVx).

Dk1(p,q) = Eyllog(p/q)] = E,|—log(q/p)] > —log(Ey|q/p]) =
— log( / dQ) =0
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MARS ATTACKS (Topps, 1962; Burton 1996)

Earth : ¢ = {0.7,0.3}, Mars : p = {0.01,0.99}.

Earth to predict Mars, less surprise on landing: Dk, (p,q) = 1.14, Dk 1. (q,p) = 2.62..
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PROBLEM: we dont know distribution p. If
we did, why do inference?

SOLUTION: Use the empirical distribution

That is, approximate population expectations
by sample averages.

—> Dkr(p,q) = Ep|log(p/q)| = Z log(pi/q:)
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Maximum Likelihood justification

1

D1 (p,q) = Epllog(p/9)] = = ) _(log(p:) — log(a:)

Minimizing KL-divergence — maximizing

Z log(q;)

Which is exactly the log likelihood! MLE!
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Model Comparison: Likelihood Ratio

Dkr(p,q) — Dkr(p,7) = Epllog(r) — log(q)| = E, [log(g)]

In the sample approximation we have:

L) = log(7)

Dkr1(p,q) — Dkr(p,r) = 2109( — —ZOQ(H Nlog
q
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MODEL COMPARISON: Deviance

You only need the sample averages of the logarithm
of r and ¢:

Dkr(p,q) — Dxr(p, ) = (log(r)) — (log(q))

Define the deviance: D(q) = —2 Z log(g;), a LOSS ..

Dkr1.(p,q) — Dkr(p, ) = (D(q) — D(r))
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Example

Generate data from:
i = 0.15:131,7; — 0.45132,,5, Yy ~ N(,u, 1)

2 parameter model.

Generate 10,000 realizations, for 1-5 parameters, 20
data points and 100 data points.

Split into train and test, and do OLS.
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Train and Test Deviances
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Train and Test Deviances
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The test set deviances are 2 x p above the training set
ones.
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Akake Information Criterion:

AlIC estimates out-of-sample deviance

AIC = Dyrgin + 2p

e Assumption: likelihood is approximately
multivariate gaussian.

e penalized log-likelihood or risk if we choose to
identify our distribution with the likelihood:
REGULARIZATION
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AlIC for Linear Regression
AIC = Dtraz’n + 2p where
D(q) = —2) log(q;) = —2¢

1
O-?WLE — NSSE

N 1
AIC = —2(——(log(2m) + log(c”)) — 2(— =———— x SSE) + 2p

AIC = Nlog(SSE/N) + 2p + constant
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