Lecture 4

Frequentist Modelling And
Regression
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Last Time:

e Monte Carlo for Integrals

e Monte Carlo Variance

e Coin toss means, variance, CLT

e Numerical Integration vs Monte-Carlo Integration
 Frequentist Statistics

e Maximum Likelihood Estimation

e Sampling Distribution
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Today

e Small World vs Big World

e MLE and Sampling

e Gaussian MLE

e Fitting without Noise

e What is noise?

e Fitting with Noise

e Test sets

e Validation and X-validation

e Regularization
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Frequentist Statistics

Answers the question: What is Data? with
"data is a sample from an existing population”
e datais stochastic, variable
e model the sample. The model may have parameters

 find parameters for our sample. The parameters are
considered FIXED.
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Point Estimates

If we want to calculate some quantity of the
population, like say the mean, we estimate it on the

sample by applying an estimator F' to the sample data
D,so i = F(D).

Remember, The parameter is viewed as fixed and the
data as random, which is the exact opposite of the
Bayesian approach which you will learn later in this

class.
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True vs estimated

If your model describes the true generating process
for the data, then there is some true u*.

We dont know this. The best we can do is to estimate

A

b

Now, imagine that God gives you some M data sets
drawn from the population, and you can now find p
on each such dataset.

So, we'd have M estimates.
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Replications
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Sampling distribution

As we let M — oo, the distribution induced on i is
the empirical sampling distribution of the estimator.

1 could be A\, our parameter, or a mean, a variance,
etc

We could use the sampling distribution to get
confidence intervals on \.

But we dont have M samples. What to do?
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Resampling

e if we want to estimate the SIZE of the effect we
use bootstrap

e if we want to estimate the SIGNIFICANCE of the
effect, we do PERMUTATION
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Maximum Likelihood estimation
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We have data on the wing length in millimeters of a
nine members of a particular species of moth. We
wish to make inferences from those measurements on
the population quantities u and o.

Y=[164,17.0,17.2,17.4,18.2,18.2,18.2, 19.9,
20.8]

Let us assume a gaussian pdf:

B 1
V 2702

p(y|p, 0%)
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MLE Estimators

LIKELIHOOD: p(y1, . - -, yn |1, 0°) = | | p(yilp, 0%)

Take partials for fi,,; » and O'MLE
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From Likelihood to Predictive Distribution

likelihood as a function of parameters is NOT a probability
distribution, rather, its a function

p(ylumie, 03,7 ) on the other hand is a probability distribution

think of it as p(y* |{v: }, umrLE, 0%, ) (NOTM. TVS with MLE

parameters), "communicating with existing data" thru the
parameters

We'll call such a distribution a predictive distribution for as yet
unseen data y*, or the sampling distribution for data, or the
data-generating distribution
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MLE for Moth Wing

. 1 S 1 oo
“MLE:NZ%:Y; J?WLE:NZ(YL'_Y)

65,11 1S @ biased estimator of the population variance, while
firs7 = 1S @n unbiased estimator.

Thatis, Ep |ty z] = w. where the D subscripts means the

expectation with respect to the predictive, or data-sampling,
or data generating distribution.

VALUES: sigma 1.33 mu 18.14
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REGRESSION

 how many dollars will you
spend?

—
o

e what is your creditworthiness

e how many people will vote for >
Bernie t days before election

e use to predict probabilities for
classification

O = N W A U Y N oW

e causal modeling in
econometrics
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HYPOTHESIS SPACES

A polynomial looks so:

h(z) =0 + 012" +0yz*+.. . +0,2" = ZOimi
i=0

All polynomials of a degree or
complexity d constitute a
hypothesis space.

H,:h,(x) =0, + 0,z

Hoo i hoo(z) = i@ixi
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SMALL World vs BIG
World

Small World answers the
guestion: given a model class
(i.e. a Hypothesis space, whats
the best model in it). It
involves parameters. lts model
checking.

BIG World compares model
spaces. Its model comparison
with or without
"hyperparameters".



Approximation: Learning without noise

30 points of data. Which fit is better? Line in H, or
curve in H,,?
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Bias or Mis-specification Error

b
o
i

Bias

NS W
1077
108
10" \ /
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population error

10 — B4
— Bx(x)

y
O = N W S VT Y N 0w
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bt
o

O = N W S U O NN 0w
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RISK: What does it mean to FIT?

Minimize distance from the line?

Rp(h1(z)) = % > (yi — ha(wi))?

y; €D

Minimize squared distance from
the line. Empirical Risk
Minimization.

g91(z) = arg Jin, Ryp (h1(z)).

Get intercept wy and slope w;.



TARGET y = f(x)
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What is noise?

e even in an approximation problem, sampling can be
a source of noise

* noise comes from measurement error, missing
features, etc

e sometimes it can be systematic as well, but its
mostly random on account of being a combination
of many small things...
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SAMPLE vs POPULATION

Want:
Rout (h) = Ep@)[(h(z) — f(2))*] = / dzp(x)(h(z) — f(z))’

LLIN:
Roa(h) = lm — 3 (h(a@i) - f(@))* = lim — 3 (h(a:) - y:)

n—o0 M n—o0 M
2z;~p(z) z;~p(z)

D representative
(D ~p(x)) = Rp(h) =) (h(z:) — v:)’

x; €D
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30
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Statement of the
Learning Problem

The sample must be
representative of the population!

A : Rp(g) smallestonH
B: Rout(g9) =~ Rp(9)

A: Empirical risk estimates in-
sample risk.

B: Thus the out of sample risk is
also small.



CONVEX MINIMIZATION

In general one can use gradient descent .

For linear-regression, one can however just do this
using matrix algebra.

Image From Nando-deFreitas Deep Learning Course 2015
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DATA SIZE MATTERS: straight line fits to a sine curve

samples with 5 data points samples with 2 data points

Corollary: Must fit simpler models to less data!
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THE REAL WORLD HAS NOISE
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y = f(x) + €
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Linear Regression MLE

(-
o

y
O = N W SA T Y NN oW
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Gaussian Distribution assumption

Each y; is gaussian distributed with "mean”
f(x) = w - x; (the regression line) and there is noise ¢
with variance ¢*:

Y; NN(W°Xz',02)-

1 ()2 /252
N(p,0*) = —z=e W1 27,
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We can then write the likelihood:

L = p(Y|X7 W, J) — Hp(yz"x’iawa 0)

L = (2m0) /2 g7 Tiluwx)*

The log likelihood ¢ then is given by:
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Maximizing gives:

wyrr = (X' X) ' X'y,
where we stack rows to get:

X = stack({x; })

1
e =7 DU — W %),
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Example: House Elections

0.2 04 0.6 0.8 1.0
DP1
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From Likelihood to Predictive Distribution

e the band on the previous graph is the sampling
distribution of the regression line, or a representation
of the sampling distribution of the w.

* p(y|x, urrE,03,; ) is a probability distribution

» thought of as p(y*|x*, {xi, ¥i }, bmrLE, 0%, ) it 1S a
predictive distribution for as yet unseen data ¢y* at x™,

or the sampling distribution for data, or the data-
generating distribution, at the new covariates x*. This
Is a wider band.
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Dep. Variable: DP R-squared: 0.806
Model: OLS Adj. R-squared: |(0.804
Method: Least Squares F-statistic: 612.0
Date: Tue, 13 Oct 2015 | Prob (F-statistic): [ 1.04e-105
Time: 16:33:01 Log-Likelihood: |368.81
No. Observations: | 298 AlC: -731.6
Df Residuals: 295 BIC: -720.5
Df Model: 2
Covariance Type: | nonrobust

coef |stderr|t P>lt| |[95.0% Conf. Int.]
Intercept | 0.2326 | 0.020 |11.503|0.000 (0.183 0.272
DP1 0.5622 [ 0.040 |14.220(0.000 | 0.484 0.640
| 0.04290.008 |5.333 |0.000|0.027 0.059
Omnibus: 7.465 | Durbin-Watson: |1.728
Prob(Omnibus): | 0.024 | Jarque-Bera (JB): | 7.316
Skew: 0.374 | Prob(JB): 0.0258
Kurtosis: 3.174 | Cond. No. 13.1
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Dem Perc(t) -
Dem Perc(t-2) + 1

e done in statsmodels

e From Gelman and Hwang



THE REAL WORLD HAS NOISE

Which fit is better now?
The line or the curve?
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UNDERFITTING (Bias)
vs OVERFITTING (Variance)
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Every model has Bias and Variance

Rout(h) = By [(h() — 9)?] = / dap(z) (h(z) — f(z) — ¢)?.

Fit hypothesis h = gp, where D is our training
sample.

Define:
(R) = / dyde p(z,4) (h(z) — 9)? = / dydeply | 2)p(a)(h(z) - )
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Then,

<R> — Ep(:l:) [ED[(gD — g)z]] + Ep(«’L’) [(f — 9)2] +0°

This is the bias variance decomposition for regression.
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e first term is variance, squared error of the various
fit g's from the average g, the hairiness.

e second term is bias, how far the average g is from
the original f this data came from.

e third term is the stochastic noise, minimum error
that this model will always have.
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TRAIN AND TEST
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Is this still a test set?

Trouble:

e no discussion on the error bars on our error
estimates

e "visually fitting" a value of d — contaminated
test set.

The moment we use it in the learning process, it is
not a test set.
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VALIDATION

e train-test not enough as we fit
for d on test set and
contaminate it

e thus do train-validate-test

Dataset D
e N
—_ N
. A Y I _J
N Y Y
Training Validation Test
Set Set Set
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trains @'

estimates Rout(g'o)

trains g'1

estimates R, +(9"1)

trains g .

estimates Rout(g'.)

trains g,

estimates Rout(g'n)

{ T

~
Training Validation
Set Set

pick H . with lowest Rout(g'.). then retrain in H . on entire set

|

—~— — \w_/
Training Set Test Set
trains g. € ‘H, testsg. & H.
estimates Rout(g‘)



CROSS-VALIDATION

For hypothesis set H , : D
e
— ——
Fold 1 train g F4, estimate Rg4
Fold 2 train g f,, estimate R,
Fold 3 train g5, estimate Rgq
Fold 4 train g"p 4, estimate R,

Calculate total error or risk over folds:

REq * Rpp + Rpg + Ry

R =
Y P
For hypothesis H ,, report R cV ;I:f?to?z:
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mH,

'i'". H 1

inH.,

inH,

-~ N

estimates ROCV

estimates Fi1 cv

estimates R‘CV

estimates RnCV

“— J\_Y__J
~
Training Validation
Set Set

pick H. with lowest R, , then retrainin 7, on entire set

“ — 7 \w_/
Training Set Test Set
trains g. € H, testsg. = H.
estimates Rout(g‘)




y.ftnH

y.ftinH,

0.5
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CROSS-VALIDATION
IS

e aresampling method

e robust to outlier validation set
e allows for larger training sets

e allows for error estimates

Here we find d = 3.
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Cross Validation considerations

e validation process as one that estimates R,
directly, on the validation set. It's critical use is in
the model selection process.

e once you do that you can estimate R_,; using the
test set as usual, but now you have also got the
benefit of a robust average and error bars.

e key subtlety: in the risk averaging process, you are
actually averaging over different ¢g— models, with
different parameters.
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REGULARIZATION: A
SMALL WORLD
APPROACH

Keep higher a-priori complexity and impose a

complexity penalty

on risk instead, to choose a SUBSET of #,,,.
We'll make the coefficients small:

5:03 < C.
1=0
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e e
High Bias Low Bias
Low Vanance High Variance
Underfitting ™. Overfitting
o’
subsets of
Hig

44— Regularizer (x



Regularzed with o =0.2

1.0

as

ao

0.5

10 1.0

as

ao

0.5

&AM 207



as

ac

a4

az

ao

ao

as

ac

a4

as

ac

a4

az

as

ac

a4

az

ao
ao

az a4 ac as

@AM 207 |

—

— 1

—

—

L]

raning
wsting
alpha = 0.0

Taining
msling
alpha = 1205

Taning
wsling
alpha = 0.001

raning
wsling
* apha=1

abs{coefficient)

abs(coefficient)

abs(coefficient)

abs(coefficient)

~&— alpha = 0.0

5 10 15 >
oefficients

—&—_alpha = 1205

5 10 15 >
oefficients

—&— alpha = 0.001

-~ .

5 10 15 o
oefficients
—&8— alpha =1
.
5 10 15 o
oefficients

REGULARIZATION

J

R(hs) = D) (v — hj(:))* +a ) 62

As we increase a, coefficients go
towards O.

j

Lasso uses a Z 6; ], sets
i=0

coefficients to exactly O.



Regularization with Cross-Validation
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CLASSIFICATION

e will a customer churn?

e is this a check? For how much?

e 3 man or a woman?
e will this customer buy?
e do you have cancer?

e |s this spam?

0 0.5 ao as 1.0 1.5 20 25 a0 as PS WhOse pictu re iS thiS?

e what is this text about?

Jimage from code in http:/bit.ly/1Azg29G
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MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)

e "Squeeze" linear regression through a Sigmoid
function

e this bounds the output to be a probability

e What is the sampling Distribution?
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Sigmoid function

This function is plotted below:

h = lambda z: 1./(14+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x and h(w - x)
with the probability that the
sampleisa'l' (y = 1).
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Then, the conditional probabilitiesof y =1 ory =0
given a particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y =0|x) =1 — h(w - x).

These two can be written together as
P(y|x, w) = h(w - x)¥(1 — h(w - x))" ¥

BERNOULLI!"
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Multiplying over the samples we get:

P(y|x,w) = P{y; }{x;},w) = H P(y;|x;, w) = H h(w-x;)% (1 — h(w- xi))(l—y,-)

A noisy y is to imagine that our data D was generated
from a joint probability distribution P(x,y). Thus we

need to model y at a given z, written as P(y | ), and
since P(x) is also a probability distribution, we have:

P(z,y) = P(y | =z)P(z),
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Indeed its important to realize that a particular
sample can be thought of as a draw from some "true"

probability distribution.

maximum likelihood estimation maximises the
likelihood of the sampley,

L=Py|=x,w)
Again, we can equivalently maximize

£ =log(P(y | x,w))
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Thus

e_log(Hh w o) (1= h(w - x;))" ))

y, €D

— Z log (h(W - %)% (1 — h(w - Xi))(l—yz-))

;Y.: logh(w - x;)% + log (1 — h(wW Xz))( Yi)
= Y (yilog(h(w-x)) + (1 — y;)log(1 — h(w - x)))

Use Convex optimization! (soon, hw)
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