Lecture 3

From Monte Carlo to
Frequentist Statistics
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So far:

e Intro

e Probability

e The basics of a model and inference
e Bayes Theorem

e Distributions, or CDF

e pdfor pmf

e LOTUS

e LLN

e Monte Carlo for Integrals
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Today:

e Monte Carlo Variance

e Coin toss means, variance, CLT

e Numerical Integration vs Monte-Carlo Integration
e Frequentist Statistics

e Maximum Likelihood Estimation

e Sampling Distribution
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Bayes Theorem

(z|y)p(y) »(z|y) p(y) p(z | y) p(y)

p(y|z) ==

piz) S py) L, e yv)rY)
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Cumulative distribution Function

The cumulative distribution function, or the CDF, is
a function

Fy :R — [O, ].],
defined by
Fx(z) =p(X < z).

Sometimes also just called distribution.
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Probability Mass Function

X is called a discrete random variable if it takes
countably many values {x,, zs,...}.

We define the probability function or the probability
mass function (pmf) for X by:

fx(z) = p(X = x)
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Probability Density function (pdf)

A random variable is called a continuous random
variable if there exists a function fx such that

fx(x) > 0 forall x, / fx(x)dx = 1 and for every a
< b, :

b
pla < X <b) = / fx(x)dx

Note: p(X = x) = 0 for every z. Confusing!
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CDF for continuous random variables

Fx(@) = [  Fx(t)dt

dFX (CB)

and fx(x) = at all points x at which Fx is

differentiable.

Continuous pdfs can be > 1. cdfs bounded in [0,1].
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pmf:

for p in the range O to 1.

flz)=p"(1—p)**
for x in the set {0,1}.
What is the cdf?
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Marginals

Marginal mass functions are defined in analog to
probabilities:

fx(@)=pX=2)=>) flz,9); fr) =pY =y) =Y f(=,v).
Yy T
Marginal densities are defined using integrals:

fx(z) = /dyf(w,y); fr(y) = /dwf(w,y)-
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probability.html

Conditionals

Conditional mass function is a conditional probability:

p(Xzat,Yzy) . fXY(way)

fxy(|y) =pX=2|Y =y)= pY=y)  fr(y)

The same formula holds for densities with some
additional requirements fy (y) > 0 and interpretation:

XAV =9~ [ farl@yde
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Expectations

The expected value, or mean, or first moment, of X is
defined to be

{ Yo xf(x) if Xis discrete

[zf(z)dx if X is continuous

EfX /:EdF

assuming that the sum (or integral) is well defined.

The discrete sum can be said to be an integral with
respect to a counting measure.
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LOTUS

Also known as The rule of the lazy statistician.

Theorem:

ifY = r(X),

EY] = /r(w)dF(a:)
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Law of Large numbers (LLN)

Let 1, x5, ..., xz, be asequence of IID values from
random variable X, which has finite mean p. Let:

1
Sn — Ezzzlmza

Then:

S, — pasn — oo.
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Formalize Monte Carlo Integration idea

For Uniform pdf: Uy, (z) =1/V =1/(b— a)
b b
= / f(@)Uab(z) dz = / f(x)dx/V =1/V

From LOTUS and the law of large numbers:

I=VxJ=VxEy|[fl]=V x hm—Zj-‘a:z

n—oo [V
x; ~U
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Example

3
I= [ [z°+ 4z sin(z)] dz.
2

def f(x):
return x**2 + 4*x*np.sin(x)
def intf(x):
return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)

a = 2;

b = 3;

N= 10000

X = np.random.uniform(low=a, high=b, size=N)
Y =£(X)

V = b-a

Imc= V * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))

Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251
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Accuracy as a function of the number of
samples
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Variance of the estimate
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Replications
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mean of sample means: 200 replications of N
coin tosses

0.520

0.515

0.510

0.505

0.500 |§

0.495

0.490

0.485

0.480
0 200 400 600 800 1000

@AM 207



E{R} (NE) = E{R}(azl + x2+... —I—wN) = E{R} (acl) + E{R} (wz)—l—. .. —I—E{R} (QZN)

In limit M — oo of replications, each of the
expectations in RHS can be replaced by the
population mean p using the law of large numbers!

Thus:

Sl

E{ R} (N
Eri(

) =Nu
) = i

Sl

In limit M — oo of replications the expectation value
of the sample means converges to the population
mean.
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Replications
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Distribution of Sample Means
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Now let underlying distribution have well defined
mean p AND a well defined variance o?.

V{R} (N«’ﬁ) — V{R} (a:l + To+.. .—I—.’IZN) = V{R} (a:l) + V{R} (wz)—l—. .. —I—V{R}(.’I}N)

Now in limit M — oo, each of the variances in the
RHS can be replaced by the population variance using
the law of large numbers! Thus:

Viry(NZ) = No”
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Replications
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The Central Limit Theorem (CLT)

Let 1, x5, ..., z, be asequence of lID values from a

random variable X. Suppose that X has the finite
mean p AND finite variance . Then:

1 n
S, = — E x;, converges to
n
i=1

0.2

Sp ~ N(u,—)asn — oo.
n
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Meaning

o weight-watchers’ study of 1000 people, average
weight is 150 Ibs with ¢ of 30Ibs.

e Randomly choose many samples of 100 people
each, the mean weights of those samples would
cluster around 150Ilbs with a standard error of 3lbs.

e a different sample of 100 people with an average
weight of 170Ilbs would be more than 6 standard
errors beyond the population mean.
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Back to Monte Carlo

We want to calculate:

Su(f) = =3 f(a:)

n =

* Whatever V[f(X)] is, the variance of the sampling
distribution of the mean goes down as 1/n

» Thus s goesdownas 1/,/n
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Basic Numerical Integration idea

(from wikipedia)
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Why is Monte-Carlo Integration important?

e |n higher dimensions d, the CLT still holds and the

, 1
error still scales as —.

/n

e How does this compete with numerical integration?
Forn = NY/4:

e left or right rule: o< 1/n, Midpoint rule: o 1/n?

e Trapezoid: « 1/n?, Simpson: o 1/n*
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LLN and Empirical Distributions

If f(x) Z(S r — x;), where z; ~ f, then:

Erlg = — Zg (x;), which is
a:zrvf

the law of large numbers, becoming exact in the
asymptote...
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Empirical pmf and cdf

Chance of Obama Victory: 99.55%, Spread: 59 votes
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Frequentist Statistics

Answers the question: What is Data? with
"data is a sample from an existing population”
e datais stochastic, variable
e model the sample. The model may have parameters

 find parameters for our sample. The parameters are
considered FIXED.
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Data story

e a story of how the data came to be.

e may be a causal story, or a descriptive one
(correlational, associative).

 The story must be sufficient to specify an
algorithm to simulate new data.

e a formal probability model.
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tossing a globe in the air experiment

e toss and catch it. When you catch it, see whats
under index finger

e mark W for water, L for land.
e figure how much of the earth is covered in water

e thus the "data" is the fraction of W tosses
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Probabilistic Model

1. The true proportion of water is p.

2. Bernoulli probability for each globe toss, where p is

thus the probability that you get a W. This
assumption is one of being Identically Distributed.

3. Each globe toss is Independent of the other.

Assumptions 2 and 3 taken together are called 1ID, or
Independent and Identially Distributed Data.
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Likelihood

How likely it is to observe k W given the parameter p?
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Likelihood

How likely it is to observe values =, ..., z, given the
parameters \?

n

HP z;|\)

1=1

How likely are the observations if the model is true?

Or, how likely is it to observe k out of n W
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Maximum Likelihood estimation
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Example Exponential Distribution Model

de ™ g >0,

f(a”’\):{o z < 0.

Describes the time between events in a
homogeneous Poisson process (events occur at a
constant average rate). Eg time between buses

arriving.

@AM 207



log-likelihood

Maximize the likelihood, or more often (easier and
more numerically stable), the log-likelihood

Zln (z; | A))

In the case of the exponential distribution we have:

n

{(lambda) = i In(Ae i) = Z (In(A) — Az;) .

1=1

@AM 207



Maximizing this:

d/l .

n
dx A

and thus:

— E :wza

which is the sample mean of our sample.

)\MLE
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Globe Toss Moael

n

P(X =k|n,p) = <k>pk(1 )t

n

¢ = log( (k)) + klog(p) + (n — k)log(1 — p)

d/ k n—k_

0
dp p 1-p

thus pyre = k

®AM 207



Point Estimates

If we want to calculate some quantity of the
population, like say the mean, we estimate it on the

sample by applying an estimator F' to the sample data
D,so i = F(D).

Remember, The parameter is viewed as fixed and the
data as random, which is the exact opposite of the
Bayesian approach which you will learn later in this

class.
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True vs estimated

If your model describes the true generating process
for the data, then there is some true u*.

We dont know this. The best we can do is to estimate

A

b

Now, imagine that God gives you some M data sets
drawn from the population, and you can now find p
on each such dataset.

So, we'd have M estimates.
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Replications
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Sampling distribution

As we let M — oo, the distribution induced on i is
the empirical sampling distribution of the estimator.

1 could be A\, our parameter, or a mean, a variance,
etc

We could use the sampling distribution to get
confidence intervals on \.

But we dont have M samples. What to do?
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Bootstrap

e |f we knew the true parameters of the population,
we could generate M fake datasets.

« we dont, so we use our estimate lambda to
generate the datasets

e this is called the Parametric Bootstrap

e usually best for statistics that are variations around
truth
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data simulated data
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Problems

e simulation error: the number of samples M is finite.
Go large M.

o statistical error: resampling from an estimated
parameter is not the "true" data generating process.
Subtraction helps.

e specification error: the model isnt quite good. Use
the non-parametric bootstrap: sample with
replacement the X from our original sample D,
generating many fake datasets.
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data simulated data
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Replications
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Linear Regression MLE
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Gaussian Distribution assumption

Each y; is gaussian distributed with mean w - x; (they
predicted by the regression line) and variance o*:

y; ~ N(w - xi,az).

1 2/,
N(p,0%) = 0\/27%6 (y=h)" /20"
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We can then write the likelihood:

L = p(Y|X7 W, J) — Hp(yz"x’iawa 0)

L = (2m0?) /2 g7t Tiluwx)*

The log likelihood ¢ then is given by:
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Maximizing gives:

wyrr = (X' X) ' X'y,
where we stack rows to get:

X = stack({x; })

1
e =7 DU — W %),
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