
Lecture 3

From Monte Carlo to 
Frequen/st Sta/s/cs



So far:

• Intro

• Probability

• The basics of a model and inference

• Bayes Theorem

• Distribu9ons, or CDF

• pdf or pmf

• LOTUS

• LLN

• Monte Carlo for Integrals



Today:

• Monte Carlo Variance

• Coin toss means, variance, CLT

• Numerical Integra9on vs Monte-Carlo Integra9on

• Frequen9st Sta9s9cs

• Maximum Likelihood Es9ma9on

• Sampling Distribu9on



Bayes Theorem



Cumula&ve distribu&on Func&on

The cumula&ve distribu&on func&on, or the CDF, is 
a func0on

,

 defined by

Some%mes also just called distribu(on.



Probability Mass Func1on

 is called a discrete random variable if it takes 
countably many values .

We define the probability func/on or the probability 
mass func/on (pmf) for X by:



Probability Density func2on (pdf)

A random variable is called a con$nuous random 
variable if there exists a func5on  such that 

 for all x,  and for every a 

≤ b,

Note:  for every . Confusing!



CDF for con*nuous random variables

and  at all points x at which  is 

differen2able.

Con$nuous pdfs can be > 1. cdfs bounded in [0,1].



pmf:

for p in the range 0 to 1.

for x in the set {0,1}.

What is the cdf?



Marginals

Marginal mass func.ons are defined in analog to 
probabili.es:

Marginal densi,es are defined using integrals:

probability.html


Condi&onals

Condi&onal mass func&on is a condi&onal probability:

The same formula holds for densi0es with some 
addi0onal requirements  and interpreta0on:



Expecta(ons

The expected value, or mean, or first moment, of X is 
defined to be

assuming that the sum (or integral) is well defined.

The discrete sum can be said to be an integral with 
respect to a coun5ng measure.



LOTUS

Also known as The rule of the lazy sta/s/cian.

Theorem:

if ,



Law of Large numbers (LLN)

Let  be a sequence of IID values from 
random variable , which has finite mean . Let:

Then:



Combine to es+mate 

If :



Formalize Monte Carlo Integra1on idea
For Uniform pdf: 

From LOTUS and the law of large numbers:



Example

def f(x):
    return x**2 + 4*x*np.sin(x)
def intf(x):
    return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;    
b = 3;
N= 10000
X = np.random.uniform(low=a, high=b, size=N)
Y =f(X)
V = b-a
Imc= V * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))

Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251



Accuracy as a func+on of the number of 
samples



Variance of the es.mate



M replica*ons of N coin tosses



mean of sample means: 200 replica1ons of N 
coin tosses



In limit  of replica/ons, each of the 
expecta/ons in RHS can be replaced by the 
popula/on mean  using the law of large numbers! 
Thus:

In limit  of replica/ons the expecta/on value 
of the sample means converges to the popula/on 
mean.



M replica*ons of N coin tosses



Distribu(on of Sample Means



Now let underlying distribu1on have well defined 
mean  AND a well defined variance .

Now in limit , each of the variances in the 
RHS can be replaced by the popula;on variance using 
the law of large numbers! Thus:



M replica*ons of N coin tosses



The Central Limit Theorem (CLT)

Let  be a sequence of IID values from a 
random variable . Suppose that  has the finite 
mean  AND finite variance . Then:

 converges to



Meaning

• weight-watchers’ study of 1000 people, average 
weight is 150 lbs with  of 30lbs.

• Randomly choose many samples of 100 people 
each, the mean weights of those samples would 
cluster around 150lbs with a standard error of 3lbs.

• a different sample of 100 people with an average 
weight of 170lbs would be more than 6 standard 
errors beyond the populaDon mean.



Back to Monte Carlo

We want to calculate:

• Whatever  is, the variance of the sampling 
distribu8on of the mean goes down as 

• Thus  goes down as 



Basic Numerical Integra1on idea

(from wikipedia)



Why is Monte-Carlo Integra3on important?

• In higher dimensions , the CLT s3ll holds and the 

error s3ll scales as .

• How does this compete with numerical integra3on? 
For :

• le? or right rule: , Midpoint rule: 

• Trapezoid: , Simpson: 



LLN and Empirical Distribu3ons

If , where , then:

, which is

the law of large numbers, becoming exact in the 
asymptote...



Empirical pmf and cdf



Frequen'st Sta's'cs

Answers the ques,on: What is Data? with

"data is a sample from an exis/ng popula)on"

• data is stochas+c, variable

• model the sample. The model may have parameters

• find parameters for our sample. The parameters are 
considered FIXED.



Data story

• a story of how the data came to be.

• may be a causal story, or a descrip7ve one 
(correla7onal, associa7ve).

• The story must be sufficient to specify an 
algorithm to simulate new data.

• a formal probability model.



tossing a globe in the air experiment

• toss and catch it. When you catch it, see whats 
under index finger

• mark W for water, L for land.

• figure how much of the earth is covered in water

• thus the "data" is the frac=on of W tosses



Probabilis)c Model

1. The true propor,on of water is .

2. Bernoulli probability for each globe toss, where  is 
thus the probability that you get a W. This 
assump,on is one of being Iden%cally Distributed.

3. Each globe toss is Independent of the other.

Assump&ons 2 and 3 taken together are called IID, or 
Independent and Iden*ally Distributed Data.



Likelihood

How likely it is to observe  W given the parameter ?



Likelihood

How likely it is to observe values  given the 
parameters ?

How likely are the observa1ons if the model is true?

Or, how likely is it to observe  out of  W



Maximum Likelihood es0ma0on



Example Exponen+al Distribu+on Model

Describes the +me between events in a 
homogeneous Poisson process (events occur at a 
constant average rate). Eg +me between buses 
arriving.



log-likelihood

Maximize the likelihood, or more o1en (easier and 
more numerically stable), the log-likelihood

In the case of the exponen.al distribu.on we have:



Maximizing this:

and thus:

which is the sample mean of our sample.



Globe Toss Model

thus 



Point Es)mates

If we want to calculate some quan0ty of the 
popula0on, like say the mean, we es0mate it on the 
sample by applying an es0mator  to the sample data 

, so .

Remember, The parameter is viewed as fixed and the 
data as random, which is the exact opposite of the 
Bayesian approach which you will learn later in this 
class.



True vs es(mated

If your model describes the true genera5ng process 
for the data, then there is some true .

We dont know this. The best we can do is to es2mate 
.

Now, imagine that God gives you some M data sets 
drawn from the popula9on, and you can now find  
on each such dataset.

So, we'd have M es.mates.



M samples of N data points



Sampling distribu0on

As we let , the distribu/on induced on  is 
the empirical sampling distribu/on of the es/mator.

 could be , our parameter, or a mean, a variance, 
etc

We could use the sampling distribu4on to get 
confidence intervals on .

But we dont have M samples. What to do?



Bootstrap

• If we knew the true parameters of the popula3on, 
we could generate M fake datasets.

• we dont, so we use our es3mate  to 
generate the datasets

• this is called the Parametric Bootstrap

• usually best for sta3s3cs that are varia3ons around 
truth



(from Shalizi)



Problems

• simula(on error: the number of samples M is finite. 
Go large M.

• sta(s(cal error: resampling from an es(mated 
parameter is not the "true" data genera(ng process. 
Subtrac/on helps.

• specifica(on error: the model isnt quite good. Use 
the non-parametric bootstrap: sample with 
replacement the X from our original sample D, 
genera(ng many fake datasets.



Use the empirical distribu1on!

(diagram from Shalizi)



M RE-samples of N data points



Linear Regression MLE



Gaussian Distribu,on assump,on

Each  is gaussian distributed with mean  (the y 
predicted by the regression line) and variance :



We can then write the likelihood:

The log likelihood  then is given by:



Maximizing gives:

where we stack rows to get:


