
Lecture 25

Varia%onal Inference
Autoencoders and Mixture Models



• we have not talked about learning , the parametriza7on of 
.

• also, what if there are data-point specific parameters in out 
model. In other words we have a , where  indexes the data-
points

• an example of this is topic modeling or genera7ve image 
modeling

• we can do this by fiAng a  as a regression model on the . And 
we can make this model non-linear by considering an ANN!



Varia%onal
Autoencoders



Autoencoders: basic idea

• h is the representa,on. An 
undercomplete autoencoder makes h of 
smaller dimension than 

•  is the encoder and  the decoder

• simplest idea: minimize 



• can think of an autoencoder as a way of 
approximately training a genera8ve 
model.

• the features of the autoencoder 
describe the latent variables that 
explain the input

• can go deep!

• generalize to a stochas8c autoencoder. 
The standard autoencoder then is a 
specific hidden state  or 



Varia%onal Autoencoder

• just as in ADVI, we want to learn an approximate "encoding 
posterior" 

• note that we have now again gone back to thinking of  as a 
(possibly) deep latent variable, or "representaCon".

We know how to do this:

ELBO maximiza+on



Basic Setup in VAE

: ELBO bounds log(evidence)

(likelihood-prior balance)



From edwardlib: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



The Game

• get  samples coming for fixed , - to be close to some 
prior, , typically chosen as an isotropic gaussian...the 
regulariza<on term

• first term is called "reconstruc<on loss", or "capacity of model to 
generate something like the data".



(from here)

https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1


VAE steps for MNIST

• details in original paper and notebook

• linear encoder for both  and 

• then transforma5on to  to be able to take gradient inside 
expecta5on as in ADVI

• then decode using a loss: binary cross-entropy  (for 
images) minus KL

https://arxiv.org/pdf/1312.6114.pdf


class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)
        self.fc22 = nn.Linear(400, 20)
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()

    def encode(self, x):
        h1 = self.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparameterize(self, mu, logvar):
        if self.training:
            std = logvar.mul(0.5).exp_()
            eps = Variable(std.data.new(std.size()).normal_())
            return eps.mul(std).add_(mu)
        else:
            return mu

    def decode(self, z):
        h3 = self.relu(self.fc3(z))
        return self.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar



model = VAE()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
def loss_function(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, 
        x.view(-1, 784), size_average=False)
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())

    return BCE + KLD

def train(epoch):
    model.train()
    train_loss = 0
    for batch_idx, (data, _) in enumerate(train_loader):
        data = Variable(data)
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(data)
        loss = loss_function(recon_batch, data, mu, logvar)
        loss.backward()
        train_loss += loss.data[0]
        optimizer.step()
    return train_loss / len(train_loader.dataset)

def test(epoch):
    model.eval()
    test_loss = 0
    for i, (data, _) in enumerate(test_loader):
        data = Variable(data, volatile=True)
        recon_batch, mu, logvar = model(data)
        test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
    test_loss /= len(test_loader.dataset)
    return test_loss

Images from here

https://jmetzen.github.io/2015-11-27/vae.html


Disentanglement Issues

• can be understood from a gaussian 
mixtures perspec4ve

• we would prefer data locality

• thus crank up the prior (regulariza4on) 
term

• this is called the VAE



How to implement?

• possible in pytorch, also in pymc3

• see convolu6onal VAE for MNIST in pymc3

• no6ce that MNIST, which we did earlier as supervised is now 
being done unsupervised.

https://docs.pymc.io/notebooks/convolutional_vae_keras_advi.html


Why?

See pymc3 for e.g. for auto-encoding LDA

• varia&onal auto-encoders algorithm which allows us to perform 
inference efficiently for large datasets

• use tunable and flexible encoders such as mul&layer perceptrons (MLPs) 
as our varia&onal distribu&on to approximate complex varia&onal 
posterior

• then its just ADVI with mini-batch on PyMC3 or pytorch. Can use for any 
posterior, example LDA, or custom for MNIST

https://docs.pymc.io/notebooks/lda-advi-aevb.html


How good is varia,onal Bayes?

• its used heavily for models like LDA (latent-dirichlet alloca:on)

• but surprisingly the "goodness-of-fit" of the posterior 
approxima:on has been handled on a case by case basis

• un:l now: see Yao et. al

https://arxiv.org/pdf/1802.02538.pdf


The Bayesian Workflow
(from Betancourt, and Savage)



Prior to Observa-on

1. Define Data and interes.ng sta.s.cs

2. Build Model

3. Analyze the joint, and its data marginal (prior predic.ve) and its summary sta.s.cs

4. fit posteriors to simulated data to calibrate

• check sampler diagnos.cs, and correlate with simulated data

• use rank sta.s.cs to evaluate prior-posterior consistency

• check posterior behaviors and behaviors of decisions



Posterior to Observa-on

1. Fit the Observed Data and Evaluate the fit

• check sampler diagnos=cs, poor performance means genera=ve model not consistent with actual data

2. Analyze the Posterior Predic=ve Distribu=on

• do posterior predic=ve checks, now comparing actual data with posterior-predic=ve simula=ons

• consider expanding the model

3. Do model comparison (if needed)

• usually within a nested model, but you might want to apply a different modeling scheme, in which 
case use loo

• you might want to ensemble instead



Two ideas from Yao et. al.

• pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementa>on, WIP). The 
idea comes from the process of smoothing in LOOCV es>ma>on

• VSBC (varia>onal simula>on based callibra>on) : Extends 
calibra>on from Bayesian Workflow to varia>onal case. pymc3 
experimenta>on by @junpenglao here, WIP

https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb


Model Comparison: How to handle non-nested models?

• cross-valida,on

• less data to fit so biased models

• we are not talking here about cross-valida,on to do 
hyperparameter op,miza,on

• specifically we will use Leave-One-Out-Cross-Valida,on 
(LOOCV) with importance sampling



LOOCV

• The idea here is that you fit a model on N-1 data points, and use the Nth point as a valida9on 
point. Clearly this can be done in N ways.

• the N-point and N-1 point posteriors are likely to be quite similar, and one can sample one from 
the other by using importance sampling.

 where .

Fit the full posterior once. Then we have



• the importance sampling weights can be 
unstable out in the tails.

• importance weights have a long right 
tail, pymc (pm.loo) fits a generalized 
pareto to the tail (largest 20% 
importance ra@os) for each held out 
data point i (a MLE fit). This smooths 
out any large varia@ons.



over the training sample.



Oceanic tools LOOCV



What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the 
same likelihood, the laAer can be used with models having the same likelihood.

2. WAIC is fast and computaEonally less intensive, so for same-likelihood models 
(especially nested models where you are really performing feature selecEon), it is 
the first line of aAack

3. One does not always have to do model selecEon. SomeEmes just do posterior 
predicEve checks to see how the predicEons are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predicEve performance within an exisEng 
cluster or group. Cross validaEon is best for new observaEons from new groups



PSIS for varia+onal posterior

Want . But we calculate  which is biased.

Use importance sampling:  where 

. 

These  may have large or infinite variance.

Use PSIS: fit shape k Pareto to M largest  and replace them by expected values of corresponding 
order sta?s?cs under the pareto. Also truncate all weights at raw maximum . Use joint as pareto 
cares not about mul?plying factors.



M empirically set as .

Result from extreme value theory (Pickands–Balkema–
de Haan theorem): condi=onal excess distribu=on 
func=on is a generalized pareto

 great, ok between 0.5 and 0.7, not so good a3er 
0.7, weights too large.

source

https://www.actuaries.org.uk/documents/short-introduction-extreme-value-theory-slides


VSBC

• basic idea from bayesian workflow, posterior from data 
simulated from prior ( ) should look like the prior. That 
is, ideally order sta=s=cs uniform

• in VSBC fit the posterior varia=onally. Will have some mismatch

• quan=fy mismatch by asymmetry in histogram of ith marginal 
callibra=on probabili=es 



Le#: ADVI posterior and pareto shape sta4s4cs

Below: VSBC histogram



Mixture Models

A distribu*on  is a mixture of  
component distribu*ons  if:

with the  being mixing weights, , 
.

Example: Zero Inflated Poisson



Genera&ve Model: How to simulate from it?

where  says which component X is drawn from.

Thus  is the probability that the hidden class variable .

Then:  and general structure is:

 .



Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

# Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
    sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])



Old faithful Geyser



Sampling mixture models: 2 
Gaussians

with pm.Model() as ofmodel:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment = pm.Categorical("assignment", p,
                    shape=ofdata.shape[0])
    sds = pm.Uniform("sds", 0, 40, shape=2)
    centers = pm.Normal("centers",
            mu=np.array([50, 80]),
            sd=np.array([20, 20]),
            shape=2)

    observations = pm.Normal("obs",
        mu=centers[assignment],
        sd=sds[assignment],
        observed=ofdata.waiting)





with pm.Model() as classmodel1:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    #Notice NO "observed" below
    assignment_tr = pm.Categorical("assignment_tr", p)
    sds = pm.Uniform("sds", 0, 100, shape=2)
    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)
    p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
    order_centers_potential = pm.Potential('order_centers_potential',
                                         tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

    # and to combine it with the observations:
    observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)



Sampling Mixture Models

• very very hard

• samplers can get stuck in a mode, possibly mul8modal posteriors

• non-iden8fiability due to label switching

• most people use EM or Varia8onal Inference

• can use explicit marginaliza8on to make it easier, see lab



3 close by gaussians

with pm.Model() as mofb:
    p = pm.Dirichlet('p', 
        a=np.array([10., 10., 10.]), shape=3)
    # ensure all clusters have some points
    p_min_potential = pm.Potential('p_min_potential', 
        tt.switch(tt.min(p) < .1, -np.inf, 0))
    # cluster centers
    means = pm.Normal('means', mu=0, sd=10, shape=3, 
        transform=tr.ordered,
        testval=np.array([-1, 0, 1]))

    category = pm.Categorical('category',
        p=p,
        shape=data.shape[0])

    # likelihood for each observed value
    points = pm.Normal('obs',
        mu=means[category],
        sd=1., #sds[category],
        observed=data)



Multiprocess sampling (2 chains in 2 jobs)
CompoundStep
>NUTS: [means, p]
>CategoricalGibbsMetropolis: [category]
Sampling 2 chains: 100%|██████████| 21000/21000 [06:13<00:00, 56.23draws/s]
There were 10 divergences after tuning. Increase `target_accept` or reparameterize.
There were 7 divergences after tuning. Increase `target_accept` or reparameterize.
The number of effective samples is smaller than 10% for some parameters.



The log-sum-exp trick and mixtures

Suppose you want to calculate 

For numerical stability, wecan write this as:

where ). Then one of  or  is zero and the other is nega3ve. 
In pymc3, from h8ps://github.com/pymc-devs/pymc3/blob/master/pymc3/math.py

def logsumexp(x, axis=None):
    # Adapted from https://github.com/Theano/Theano/issues/1563
    x_max = tt.max(x, axis=axis, keepdims=True)
    return tt.log(tt.sum(tt.exp(x - x_max), axis=axis, keepdims=True)) + x_max



Why? Marginalizing over discretes.

For example (as taken from the Stan Manual), the mixture of  and  with 
mixing propor;on :

If we do this, we can go directly from the Dirichlet priors for  and forget the category 
variable



pymc3 does this for us

import pymc3.distributions.transforms as tr
with pm.Model() as mof3:
    p = pm.Dirichlet('p', a=np.array([10., 10., 10.]), shape=3)
    means = pm.Normal('means', mu=0, sd=10, shape=3, transform=tr.ordered,
                  testval=np.array([-1, 0, 1]))

    points = pm.NormalMixture('obs', p, mu=means, sd=1, observed=data)



By Hand

def logp_normal(mu, sigma, value):
    # log probability of individual samples
    delta = lambda mu: value - mu
    return (-1 / 2.) * (tt.log(2 * np.pi) + tt.log(sigma*sigma) +
                         (delta(mu)* delta(mu))/(sigma*sigma))

# Log likelihood of Gaussian mixture distribution
def logp_gmix(mus, pis, sigmas, n_samples, n_components):

    def logp_(value):        
        logps = [tt.log(pis[i]) + logp_normal(means[i], sigmas[i], value)
                 for i in range(n_components)]

        return tt.sum(logsumexp(tt.stacklists(logps)[:, :n_samples], axis=0))

    return logp_



with pm.Model() as mof2:
    p = pm.Dirichlet('p', 
        a=np.array([10., 10., 10.]), shape=3)

    # cluster centers
    means = pm.Normal('means', mu=0, sd=10, 
        shape=3, transform=tr.ordered,
        testval=np.array([-1, 0, 1]))

    sds = [1., 1., 1.]
    # likelihood for each observed value 
    points = pm.DensityDist('obs', logp_gmix(means, p, sds, data.shape[0], 3),
                       observed=data)

Now we can use NUTS or ADVI as no discrete parameters are le9 in 
the problem



Sampling mixture models: 2 
close Gaussians

with pm.Model() as model1:
    p = [1/2, 1/2]
    means = pm.Normal('means', mu=0, sd=10, shape=2)
    points = pm.NormalMixture('obs', p, mu=means, 
        sd=1, observed=data)





Mul$-modal posterior



Fix by ordering

import pymc3.distributions.transforms as tr
with pm.Model() as model2:
    p = [1/2, 1/2]

    means = pm.Normal('means', mu=0, sd=10, 
        shape=2, transform=tr.ordered,
                  testval=np.array([-1, 1]))
    points = pm.NormalMixture('obs', p, mu=means, 
        sd=1, observed=data)



ADVI

advi2 = pm.ADVI(model=model2)
advi2.fit(n=15000)
samps2=advi2.approx.sample(10000)



Back to the 3 gaussians

import pymc3.distributions.transforms as tr
with pm.Model() as mof3:
    p = pm.Dirichlet('p', 
        a=np.array([10., 10., 10.]), shape=3)
    means = pm.Normal('means', mu=0, s
        d=10, shape=3, transform=tr.ordered,
        testval=np.array([-1, 0, 1]))
    points = pm.NormalMixture('obs', p, 
        mu=means, sd=1, observed=data)



And with ADVI


