Lecture 25

Variational Inference

Autoencoders and Mixture Models



 we have not talked about learning 8, the parametrization of
oz, 2).

e also, what if there are data-point specific parameters in out
model. In other words we have a ¢;, where i indexes the data-
points

e an example of this is topic modeling or generative image
modeling

e we can do this by fitting a ¢; as a regression model on the z;. And
we can make this model non-linear by considering an ANN!
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Variational
Autoencoders




Autoencoders: basic idea

 his the representation. An
undercomplete autoencoder makes h of
smaller dimension than z

e fisthe encoder and g the decoder

e simplest idea: minimize L(z, g(f(x)))
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e can think of an autoencoder as a way of
approximately training a generative
model.

e the features of the autoencoder
describe the latent variables that
explain the input

e can go deep!

e generalize to a stochastic autoencoder.
The standard autoencoder then is a
specific hidden state h or z
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Variational Autoencoder

e just as in ADVI, we want to learn an approximate "encoding
posterior" p(z|z)

 note that we have now again gone back to thinking of z as a
(possibly) deep latent variable, or "representation”.

We know how to do this:

ELBO maximization
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Basic Setup in VAE

KL + ELBO = log(p(x)): ELBO bounds log(evidence)

2,2), _ o palDp(e)
az) |~ Pallos =y

—> ELBO(q) = E,,)|(log(p(z|z))] — KL(q(2)||p(2))

p(2) |

ELBO(q) = E,llog q(z)

= F,|logp(x|z)| + E,|log

(likelihood-prior balance)
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From edwardlib: p(x | z)

describes how any data x depend on the latent variables z.

 The likelihood posits a data generating process, where the data
x are assumed drawn from the likelihood conditioned on a
particular hidden pattern described by z.

* The prior p(z) is a probability distribution that describes the

latent variables present in the data. The prior posits a generating
process of the hidden structure.
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The Game

ELBO(q) = Ey() [(log(p(z|2))] — KL(g(2|z)||p(2))

e get z samples coming for fixed z, q(z|x)- to be close to some
prior, p(z), typically chosen as an isotropic gaussian...the
regularization term

e first term is called "reconstruction loss", or "capacity of model to
generate something like the data".
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encode > decode >

(from he
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https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1

VAE steps for MNIST

e details in original paper and notebook

e linear encoder for both 1 and log(o?)

* then transformation to N (0, 1) to be able to take gradient inside
expectation as in ADVI

» then decode using a loss: binary cross-entropy p(x|z) (for
images) minus KL
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https://arxiv.org/pdf/1312.6114.pdf

class VAE(nn.Module):

def

def

def

def

def

init  (self):
super(VAE, self)._ _in
self.fcl = nn.Linear(

it ()
784, 400)

self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)

self.fc3 = nn.Linear(
self.fc4 = nn.Linear(
self.relu = nn.ReLU()
self.sigmoid = nn.Sig

encode(self, x):
hl = self.relu(self.f
return self.fc21(hl),

reparameterize(self,
if self.training:
std = logvar.mul(

20, 400)
400, 784)

moid()

cl(x))
self.fc22(hl)

mu, logvar):

0.5).exp_()

eps = Variable(std.data.new(std.size()).normal ())

return eps.mul(st
else:
return mu

decode(self, z):
h3 = self.relu(self.f

d).add_(mu)

c3(z))

return self.sigmoid(self.fc4(h3))

forward(self, x):

mu, logvar = self.encode(x.view(-1,
z = self.reparameterize(mu, logvar)

return self.decode(z),
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mu, logvar
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model = VAE()

def

def

def

optimizer = optim.Adam(model.parameters(), lr=le-3)

loss_function
BCE = F.binary_cross_entropy(recon_x,
x.view(-1, 784), size_average=False)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())

return BCE + KLD

train
model. traln()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
Lloss.backward()
train_loss += loss.data[@]
optimizer.step()
return train_loss / len(train_loader.dataset)

test
model. evaL()
test_loss = 0
for i, (data, _) in enumerate(test_Lloader):
data = Variable(data, volatile=True)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).data[@]
test_loss /= len(test_loader.dataset)
return test_loss

Images from here


https://jmetzen.github.io/2015-11-27/vae.html

Disentanglement Issues

e can be understood from a gaussian
mixtures perspective

 we would prefer data locality

e thus crank up the prior (regularization)
term

e thisis called the SVAE
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How to implement?

e possible in pytorch, also in pymc3
e see convolutional VAE for MNIST in pymc3

e notice that MNIST, which we did earlier as supervised is now
being done unsupervised.
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https://docs.pymc.io/notebooks/convolutional_vae_keras_advi.html

Why?

See pymc3 for e.g. for auto-encoding LDA

e variational auto-encoders algorithm which allows us to perform
inference efficiently for large datasets

e use tunable and flexible encoders such as multilayer perceptrons (MLPs)
as our variational distribution to approximate complex variational

posterior

e then its just ADVI with mini-batch on PyMC3 or pytorch. Can use for any
posterior, example LDA, or custom for MNIST
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https://docs.pymc.io/notebooks/lda-advi-aevb.html

How good is variational Bayes?

e its used heavily for models like LDA (latent-dirichlet allocation)

e but surprisingly the "goodness-of-fit" of the posterior
approximation has been handled on a case by case basis

e until now: see Yao et. al
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https://arxiv.org/pdf/1802.02538.pdf

The Bayesian Workflow

(from Betancourt, and Savage)
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Prior to Observation

1. Define Data and interesting statistics
2. Build Model

3. Analyze the joint, and its data marginal (prior predictive) and its summary statistics
4. fit posteriors to simulated data to calibrate

e check sampler diagnostics, and correlate with simulated data

e use rank statistics to evaluate prior-posterior consistency

e check posterior behaviors and behaviors of decisions
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Posterior to Observation

1. Fit the Observed Data and Evaluate the fit

e check sampler diagnostics, poor performance means generative model not consistent with actual data
2. Analyze the Posterior Predictive Distribution

e do posterior predictive checks, now comparing actual data with posterior-predictive simulations

e consider expanding the model
3. Do model comparison (if needed)

e usually within a nested model, but you might want to apply a different modeling scheme, in which
case use loo

e you might want to ensemble instead
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Two ideas from Yao et. al.

e pareto shape parameter k from PSIS tells you goodness of fit
(see here for @junpenglao pymc3 implementation, WIP). The
Idea comes from the process of smoothing in LOOCV estimation

e VSBC (variational simulation based callibration) : Extends
calibration from Bayesian Workflow to variational case. pymc3

experimentation by @junpenglao here, WIP
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https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/WIP/%5BWIP%5D%20Comparing%20VI%20approximation.ipynb
https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Simulation%20Based%20Calibration.ipynb

Model Comparison: How to handle non-nested models?

e cross-validation
e |ess data to fit so biased models

 we are not talking here about cross-validation to do
hyperparameter optimization

e specifically we will use Leave-One-Out-Cross-Validation
(LOOCV) with importance sampling
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LOOCV

e The idea here is that you fit a model on N-1 data points, and use the Nth point as a validation
point. Clearly this can be done in N ways.

e the N-point and N-1 point posteriors are likely to be quite similar, and one can sample one from
the other by using importance sampling.

Ey[h] = Zi w,;f

Fit the full posterior once. Then we have

=~ where w, = f,/gs.

w. — p(98|y—i) x 1
p(Osly) — p(yil0s,y—:)
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e the importance sampling weights can be
unstable out in the tails.

e importance weights have a long right
tail, pymc (pm. Loo) fits a generalized
pareto to the tail (largest 20%
importance ratios) for each held out
data point i (@ MLE fit). This smooths
out any large variations.
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elpdloo — Z log(p(y’t |y—’& ))

over the training sample.
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Oceanic tools LOOCV
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What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the
same likelihood, the latter can be used with models having the same likelihood.

2. WAIC is fast and computationally less intensive, so for same-likelihood models

(especially nested models where you are really performing feature selection), it is
the first line of attack

3. One does not always have to do model selection. Sometimes just do posterior
predictive checks to see how the predictions are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predictive performance within an existing
cluster or group. Cross validation is best for new observations from new groups
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PSIS for variational posterior

Want E, [k(6)]. But we calculate B, [h(6)] = (1/S) ) _h(6;) which is biased.

Zs Wy h(es )
Zs Ws

Use importance sampling: E, [h(6)] = where

Ws — p(esa y)/q
These w, may have large or infinite variance.

Use PSIS: fit shape k Pareto to M largest w, and replace them by expected values of corresponding
order statistics under the pareto. Also truncate all weights at raw maximum w,. Use joint as pareto
cares not about multiplying factors.
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M empirically set as min(S/5, 31/5).

Result from extreme value theory (Pickands-Balkema-
de Haan theorem): conditional excess distribution
function is a generalized pareto
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k < 0.5 great, ok between 0.5 and 0.7, not so good after
0.7, weights too large.

source


https://www.actuaries.org.uk/documents/short-introduction-extreme-value-theory-slides

VSBC

e basic idea from bayesian workflow, posterior from data
simulated from prior (6, ~ p(@)) should look like the prior. That

IS, ideally order statistics uniform
e in VSBC fit the posterior variationally. Will have some mismatch

e quantify mismatch by asymmetry in histogram of ith marginal
callibration probabilities p;; = P,(6; < [6];)
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Figure 3

~ Dirichletx(a)

~ Discrete(6)

~ Mz, 1)

~ N0, 6})

(@) A graphical model for a mixture of two Gaussians. There are three data points. The shaded nodes are
observed variables, the unshaded nodes are hidden variables, and the blue square boxes are fixed
hyperparameters (such as the Dirichlet parameters). () A graphical model for a mixture of K Gaussians with

N data points.
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Mixture Models

A distribution p(z|{6}) is a mixture of K
component distributions py, ps, ... px if:

p(x{6r}) =  Mepr(x|0k)
k

with the )\, being mixing weights, A\, > 0,

Z)\kzl.
k

Example: Zero Inflated Poisson



Generative Model: How to simulate from it?

Z ~ Categorical(Ai, A2, . .., Ag)

where Z says which component X is drawn from.

Thus ); is the probability that the hidden class variable z = j.

Then: X ~ p,(x|0,) and general structure is:

p(z|{0:}) ZP z, z) Zp p(x|z,0,)

@AM 207
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Gaussian Mixture Model

p(@|{6:}) = 3 AN (@|pak, i)
k

Generative:

mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])

n = 10000

# Simulate from each distribution according to mixing proportion psi

z = multinomial.rvs(1l, lambda_ true, size=n) #categorical

x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, o, ©],[9, @, 1],...[1, @, @],[1, @, @]])
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Sampling mixture models: 2
Gaussians

assignment o assignment
) 21
@ 1000 >
:
with pm.Model() as ofmodel: = 0 S0
1 = Uniform( 'p', 0, 1) -0.5 0.0 0.5 1.0 1.5 0 500 1000 1500
P pm. P ’ centers ® centers
'p2 = 1 - 'p]_ > ‘_g 8) ————e
c
p = tt.stack([pl, p2]) g 05 °
. _ . . . 0 3 £ 60
assignment = pm.Categorical("assignment", p, £ 00 5 e
Shape:ofdata . Shape [@] ) . 55 60 65 70 75 80 @ 0 500 1000 1500
sds = pm.Uniform("sds", 0, 40, shape=2) P

centers = pm.Normal("centers",
mu=np.array([ 50, 80]),

sd=np.array([20, 20]), 025 030 035 040 045
shape=2) sds

Frequency
o )
>‘
Sample value
o o
w A~

o

500 1000 1500

observations = pm.Normal("obs",
mu=centers[assignment],
sd=sds[assignment],
observed=ofdata.waiting)

Frequency
o -
(6]
(2}
N
(o0}
Sample value
o ~
o (&)

0 500 1000 1500
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Visualizing Clusters using posterior-mean parameters

- (Cluster O (using pggterior-mean parameters)

0.04 ~—— Cluster 1 (using rior-mean parameters)
[ histogram of dat

0.03

0.02

0.01

0.00

20 40 60 80 100 120
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with pm.Model() as classmodell:
pl = pm.Uniform('p', 0, 1)
p2 =1 - pl
p = tt.stack([pl, p2])
#Notice NO "observed" below
assignment _tr = pm.Categorical('"assignment tr", p)
sds = pm.Uniform("sds", @, 100, shape=2)
centers = pm.Normal('"centers",
mu=np.array([1360, 1/0]),
sd=np.array([20, 20]),
shape=2)
p_min_potential = pm.Potential('lam min potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
order centers potential = pm.Potential('order centers potential',
tt.switch(centers[l]-centers[0] < @, -np.inf, 0))

# and to combine it with the observations:
observations = pm.Normal("obs'", mu=centers[assignment tr], sd=sds[assignment tr], observed=xtr)
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Sampling Mixture Models

e very very hard

e samplers can get stuck in a mode, possibly multimodal posteriors
 non-identifiability due to label switching

e most people use EM or Variational Inference

e can use explicit marginalization to make it easier, see lab
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3 close by gaussians

with pm.Model() as mofb:

p = pm.Dirichlet('p',
a=np.array([10., 10., 10.]), shape=3)

# ensure all clusters have some points

p_min_potential = pm.Potential('p_min potential',
tt.switch(tt.min(p) < .1, -np.inf, 0))

# cluster centers

means = pm.Normal( 'means', mu=0, sd=10, shape=3,
transform=tr.ordered,
testval=np.array([-1, 0, 1]))

category = pm.Categorical('category',
P=pP,
shape=data.shape[0])

# likelihood for each observed value 1
points = pm.Normal('obs',

mu=means[category],

sd=1., #sds[category],

observed=data)
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Multiprocess sampling (2 chains in 2 jobs)

CompoundStep

>NUTS: [means, p]

>CategoricalGibbsMetropolis: [category]

Sampling 2 chains: 100% || N 21000/21000 [06:13<00:00, 56.23draws/s]

There were 10 divergences after tuning. Increase "target_accept’ or reparameterize.
There were 7 divergences after tuning. Increase "target_accept ' or reparameterize.
The number of effective samples is smaller than 10% for some parameters.
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The log-sum-exp trick and mixtures

Suppose you want to calculate log_sum_exp(a, b) = log(exp(a) + exp(b)).

For numerical stability, wecan write this as:
log (exp(a) + exp(b)) = c + log [exp(a — c) + exp(b — c)],

where ¢ = max(a, b). Then one of a — c or b — ¢ is zero and the other is negative.
In pymc 3, from https:/github.com/pymc-devs/pymc3/blob/master/pymc3/math.py

def Llogsumexp(x, axis=None):
# Adapted from https://github.com/Theano/Theano/issues/1563
X _max = tt.max(x, axis=axis, keepdims=True)
return tt.log(tt.sum(tt.exp(x - x_max), axis=axis, keepdims=True)) + Xx_max
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Why? Marginalizing over discretes.

For example (as taken from the Stan Manual), the mixture of N(—1,2) and N (3, 1) with
mixing proportion A = (0.3,0.7):

logp(y|A, u,0) = log[0.3 X N(y| —1,2) + 0.7 x N(y|3,1)]
= log lexp(log(0.3 x N(y| — 1,2))) + exp(log(0.7 x N(y|3,1)))]
= log_sum_exp (log(0.3) + log N(y| — 1,2), log(0.7) + log N(y|3,1)).

If we do this, we can go directly from the Dirichlet priors for p and forget the category
variable
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pymc3 does this for us

import pymc3.distributions.transforms as tr
with pm.Model() as mof3:
p = pm.Dirichlet('p', a=np.array([10., 10., 10.]), shape=3)
means = pm.Normal( 'means', mu=0, sd=10, shape=3, transform=tr.ordered,
testval=np.array([-1, @, 1]))

points = pm.NormalMixture( 'obs', p, mu=means, sd=1, observed=data)
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By Hand

def logp normal(mu, sigma, value):
# log probability of individual samples
delta = lambda mu: value - mu
return (-1 / 2.) *¥ (tt.log(2 * np.pi) + tt.log(sigma*sigma) +
(delta(mu)* delta(mu))/(sigma*sigma))

# Log likelihood of Gaussian mixture distribution
def logp_gmix(mus, pis, sigmas, n_samples, n_components):

def logp (value):
logps = [tt.log(pis[i]) + Llogp _normal(means[i], sigmas[i], value)
for 1 in range(n_components) ]

return tt.sum(logsumexp(tt.stacklists(logps)[:, :n_samples], axis=0))

return logp_
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with pm.Model() as mof2:
p = pm.Dirichlet('p',
a=np.array([10., 10., 10.]), shape=3)

# cluster centers

means = pm.Normal( 'means', mu=0, sd=10,
shape=3, transform=tr.ordered,
testval=np.array([-1, 0, 1]))

sds = [1., 1., 1.]

# likelihood for each observed value

points = pm.DensityDist('obs', logp_gmix(means, p, sds, data.shape[@], 3),
observed=data)

Now we can use NUTS or ADVI as no discrete parameters are left in
the problem

@AM 207
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Sampling mixture models: 2
close Gaussians

with pm.Model() as modell:
p=[1/2, 1/2]

means = pm.Normal( 'means', mu=0, sd=10, shape=2)
points = pm.NormalMixture( 'obs',

sd=1, observed=data)

p, mu=means,
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Fix by ordering

import pymc3.distributions.transforms as tr
with pm.Model() as model2:
p =1[1/2, 1/2]

means = pm.Normal('means', mu=0, sd=10,
shape=2, transform=tr.ordered,
testval=np.array([-1, 17))
points = pm.NormalMixture('obs', p, mu=means,
sd=1, observed=data)

means (0] means

> =

0 2 o 1

g o 0

o Q. _1 1 l [ 1 |
o £ l | 1 ] |
w0 @

-1 0 1 n 0 5000 10000 15000
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ADVI

advi2 = pm.ADVI(model=model?2)
advi2.fit(n=15000)
samps2=advil2.approx.sample(10000)

means

o N

1 I | l
2000 4000 6000 8000 10000

Frequency
o N
Sample value

o
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Back to the 3 gaussians

import pymc3.distributions.transforms as tr
with pm.Model() as mof3:
p = pm.Dirichlet('p',
a=np.array([10., 10., 10.7]), shape=3)
means = pm.Normal('means', mu=0, s
d=10, shape=3, transform=tr.ordered, F)

. testval=np.arra¥([—1, 0, 11)) g p
P memne. at opebmvedodatay € 050

2 0.25
Q. 0.
=

04 (tnu
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