
Lecture 24

VARIATIONAL INFERENCE



Latent variables

• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood vs par2al data likelihood

• probabilis2c model is a joint distribu,on 

• observed variables  corresponding to data, and latent variables 

• can be both "global" parameters and per-data-point cluster 
belonging



x-data likelihood

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence



• KL divergence only 0 when  exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO  is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of : 



E-step conceptually

Choose at some (possibly ini1al) value of 
the parameters ,

then KL divergence = 0, and thus  = 
log-likelihood at , maximizing the 
ELBO.

Condi&oned on observed data, and , 
we use  to conceptually compute the 
expecta&on of the missing data.



M-step

A"er E-step, ELBO touches , any 
maximiza:on wrt  will also “push up” on 
likelihood, thus increasing it.

Thus hold  fixed at the z-posterior 
calculated at , and maximize ELBO 

 or  wrt  to obtain 
new .

In general , hence KL 
. Thus increase in  increase in 

ELBO.



Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate  
which gives rise to  or 

(blue curve) whose value 
equals the value of  at .

2. M-step: maximize  or  wrt  to 
get .

3. Set 



In EM we know  but what if you did not? You know pdf 
, and thus an un-normalized 

When  are the parameters of some posterior, this is the standard 
bayesian inference problem!! 

What is the data size is too large? And our samplers take too long. 
And MCMC has sampler fidles. We'll need to use:

VARIATIONAL INFERENCE



Core Idea

 is now all parameters. Dont dis1nguish 
from .

Restric(ng to a family of approximate 
distribu(ons D over , find a member of 
that family that minimizes the KL 
divergence to the exact posterior. An 
op(miza(on problem over func(ons:



VI vs MCMC

MCMC VI

More computa,onally intensive Less intensive

Guarantees producing asympto,cally exact 
samples from target distribu,on

No such guarantees

Slower Faster, especially for large data sets and 
complex distribu,ons

Best for precise inference Useful to explore many scenarios quickly or 
large data sets



Mean Field: Find a  such that:

: KL minimized means ELBO maximized.

Choose a "mean-field"  such that:

Each individual latent factor can take on any paramteric form 
corresponding to the latent variable.



Op#miza#on: CAVI

Coordinate ascent mean-field varia2onal inference

maximizes ELBO by itera1vely op1mizing each varia1onal factor of 
the mean-field varia1onal distribu1on, while holding the others 
fixed.

Define Complete Condi.onal of 



Algorithm

Input:  with data set , Output: 

Ini(alize: 

while ELBO has not converged (or z have not converged):`
    for each j:

    compute ELBO



where the expecta+ons above are with respect to the varia+onal 
distribu+on over :

Asser%on: 

(because the mean-field family assumes that all the latent variables 
are independent)



Example: "Fake :-) Gaussian"

data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)

Assume Gaussian posteriors for mu and log(sd). So, for e.g.,



For the second term below, we have only retained what depends 
on 

Upto an added constant, . Thus, 
maximizing  same as minimizing KL divergence.

This occurs when . Thus CAVI locally maximizes ELBO.



Example of 1D Gaussian

Consider a varia,onal posterior .



Using our formulae we have for the approximate  posterior:

and thus 

with  and 



with the approximate  posterior , and

, 





ADVI
Core Idea:

• Use gradient based op0miza0on, do it on less data

• do it automa0cally



Problem with CAVI

• does not scale

• ELBO must be painstakingly calculated

• op8mized with custom CAVI updates for each new model

• If you choose to use a gradient based op8mizer then you must 
supply gradients.



ADVI solves this problem automa4cally. The user 
specifies the model, expressed as a program, and 
ADVI automa4cally generates a corresponding 

varia4onal algorithm. The idea is to first automa4cally 
transform the inference problem into a common 

space and then to solve the varia4onal op4miza4on. 
Solving the problem in this common space solves 

varia4onal inference for all models in a large class.
 -ADVI Paper

https://arxiv.org/pdf/1603.00788.pdf


Basic Idea: BBVI

def lower_bound(variational_params, logprob_func, D, num_samples):
    # variational_params, mean and covariance of q.
    # logprob_func: model unnormalized log-probability.
    # D: number of parameters
    # num_samples: number of Monte Carlo samples.
    mu, cov = variational_params[:D], np.exp(variational_params[D:])
    # Sample from MVN using eparameterization trick.
    samples = npr.randn(num_samples, D) * np.sqrt(cov) + mu
    # ELBO = exact entropy plus Monte Carlo estimate of energy.
    return mvn.entropy(mu, np.diag(cov)) + np.mean(logprob(samples))
    # Gradient wrt variational params using autograd.
    gradient_func = grad(lower_bound) 
    #then use Adam, or RMSpropo SGD

def log_density(x):
    # An example unnormalized 2D density
    mu, log_sigma = x[:, 0], x[:, 1]
    sigma_density = norm.logpdf(log_sigma, 0, 1.35)
    mu_density = norm.logpdf(mu, 0, np.exp(log_sigma))
    return sigma_density + mu_density

from Duvenaud and Adams

https://www.cs.toronto.edu/~duvenaud/papers/blackbox.pdf


What does ADVI do?

1. Transforma+on of latent parameters

2. Standardiza+on transform for posterior to push gradient inside 
expecta+on

3. Monte-Carlo es+mate of expecta+on

4. Hill-climb using automa+c differen+a+on



Start with: 

where  is a func-on of , parametrized by varia-onal params :

. 

We'll choose a family, say normals as the distribu6on for each 
postrior parameter . Then  is all the means and standard 
devia6ons of the normals. But before that we must ensure all  live 
on the real line, If they dont, we'll transform or marginalize.



(1) T-Transforma.on

• Latent parameters are transformed to representa/ons where the 
'new" parameters are unconstrained on the real-line. Specifically 
the joint  transforms to  where  is un-constrained.

• This is done for ALL latent variables. Thus use the same 
varia/onal family for ALL parameters, and indeed for ALL models



• Discrete parameters must be 
marginalized out.

• Op7mizing the KL-divergence implicitly 
assumes that the support of the 
approxima7ng density lies within the 
support of the posterior. These 
transforma7ons make sure that this is 
the case

• First choose as our family of 
approxima7ng densi7es mean-field 
normal distribu7ons. We'll transform 
the always posi7ve  params by simply 
taking their logs.



(2) S-transforma/on (a func/on of )

• we must maximize our suitably transformed ELBO, so want to autodiff wrt .

• we are op=mizing an expecta=on value with respect to the transformed 
approximate posterior. This posterior contains our transformed latent 
parameters so the gradient of this expecta=on is not simply defined.

• we want to push the gradient inside the expecta=on. For this, the 
distribu=on we use to calculate the expecta=on must be free of parameters

Another transforma-on takes the approximate 1-D gaussian  and standardizes 
it. The determinant of the jacobian of this transform is 1.



(3) Calculate the gradients to maximize the ELBO and

Standardize the  by the means and standard devia1ons (choleskies) of the  
approxima1ons, to get .

We dont bother to standardize the entropy, as the entropy of the gaussian is a well 
known beast and we can compute it.

Now we can move the gradient inside the expecta4on (integral) to boot. This means 
that our job now becomes the calcula4on of the gradient of the full-data joint.



(4) Calculate the gradients and compute the expecta7on

As a result of this, we can now compute the expecta5on as a 
monte-carlo es5mate over a standard Gaussian--superfast! 

We can replace full  data by just one point (SGD) or mini-batch 
(some- ) and thus use noisy gradients to op=mize the varia=onal 
distribu=on.

An adap'vely tuned step-size is used to provide good convergence.



ADVI in pymc3

data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1, testval=0)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)
advifit = pm.ADVI( model=model)
advifit.fit(n=50000)
elbo = -advifit.hist
plt.plot(elbo[::10]);  

Elbo: 



trace = advifit.approx.sample(10000)
pred = pm.sample_ppc(trace, 10000, model=model)
sns.distplot(trace_nuts['mu'], label='NUTS')
sns.kdeplot(trace['mu'], label='ADVI')
sns.distplot(data)
sns.kdeplot(pred['n'][:,0])
...

le#, parameters; right, pp



ADVI problems: 2D gaussian 
example

High correla,on gaussian with sampler

cov=np.array([[0,0.8],[0.8,0]], dtype=np.float64)
data = np.random.multivariate_normal([0,0], cov, size=1000)
sns.kdeplot(data);
with pm.Model() as mdensity:
    density = pm.MvNormal('density', mu=[0,0],
    cov=tt.fill_diagonal(cov,1), shape=2)
with mdensity:
    mdtrace=pm.sample(10000)

Trace: 



Sampling with ADVI

mdvar = pm.ADVI(model=mdensity)
mdvar.fit(n=40000)
samps=mdvar.approx.sample(5000)
plt.scatter(samps['density'][:,0],
    samps['density'][:,1], s=5, alpha=0.3)

ADVI cannot find the correla1onal 
structure.

Transform to de-correlate to use ADVI.

You have been doing this for NUTS 
anyways. Or use Full Rank.



ADVI Full Rank

mdvar_fr = pm.FullRankADVI(model=mdensity)



Relaxing the mean-field approxima3on

• Full-Rank ADVI: model covariance

• Normalizing Flows

• Operator Varia@onal Inference: allows generaliza@on of many 
algorithms under one umbrella

(all implemented in pymc3)

https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/pdf/1610.09033.pdf


Why use VB

• simply not possible to do inference in large models

• inference in neural networks: understanding robustness, etc

• hierarchical neural networks

• Mixture density networks: mixture parameters are fi=ed using ANNs

• extension to genera@ve semisupervised learning

• varia@onal autoencoders

https://arxiv.org/pdf/1406.5298.pdf
https://arxiv.org/pdf/1312.6114.pdf


Bayesian Neural Network in 
pymc3

def construct_nn(ann_input, ann_output):
    n_hidden = 5
    # Initialize random weights between each layer
    init_1 = np.random.randn(X.shape[1], n_hidden)
    init_2 = np.random.randn(n_hidden, n_hidden)
    init_out = np.random.randn(n_hidden)
    with pm.Model() as neural_network:
        # Weights from input to hidden layer
        weights_in_1 = pm.Normal('w_in_1', 0, sd=1,
                    shape=(X.shape[1], n_hidden),
                        testval=init_1)
        # Weights from 1st to 2nd layer
        weights_1_2 = pm.Normal('w_1_2', 0, sd=1,
                    shape=(n_hidden, n_hidden),
                        testval=init_2)
        # Weights from hidden layer to output
        weights_2_out = pm.Normal('w_2_out', 0, sd=1,
                        shape=(n_hidden,),
                            testval=init_out)
        # Build neural-network using tanh activation function
        act_1 = pm.math.tanh(pm.math.dot(ann_input,
                                        weights_in_1))
        act_2 = pm.math.tanh(pm.math.dot(act_1,
                                        weights_1_2))
        act_out = pm.math.sigmoid(pm.math.dot(act_2,
                                        weights_2_out))
        # Binary classification -> Bernoulli likelihood
        out = pm.Bernoulli('out',
                           act_out,
                           observed=ann_output,
                           total_size=Y_train.shape[0] # IMPORTANT for minibatches
                          )
    return neural_network



Fi#ng with uncertainty

ann_input = theano.shared(X_train)
ann_output = theano.shared(Y_train)
neural_network = construct_nn(ann_input, ann_output)
with neural_network:
    nutstrace = pm.sample(2000, tune=1000)

232+120 divergences, bad acceprance 
probability, high , 5 mins.

with neural_network:
    inference = pm.ADVI()
    approx = pm.fit(n=30000, method=inference)

28 seconds.



• we have not talked about learning , the parametriza7on of 
.

• also, what if there are data-point specific parameters in out 
model. In other words we have a , where  indexes the data-
points

• an example of this is topic modeling or genera7ve image 
modeling

• we can do this by fiAng a  as a regression model on the . And 
we can make this model non-linear by considering an ANN!



Varia%onal
Autoencoders



Autoencoders: basic idea

• h is the representa,on. An 
undercomplete autoencoder makes h of 
smaller dimension than 

•  is the encoder and  the decoder

• simplest idea: minimize 



• can think of an autoencoder as a way of 
approximately training a genera8ve 
model.

• the features of the autoencoder 
describe the latent variables that 
explain the input

• can go deep!

• generalize to a stochas8c autoencoder. 
The standard autoencoder then is a 
specific hidden state  or 



Varia%onal Autoencoder

• just as in ADVI, we want to learn an approximate "encoding 
posterior" 

• note that we have now again gone back to thinking of  as a 
(possibly) deep latent variable, or "representaCon".

We know how to do this:

ELBO maximiza+on



Basic Setup in VAE

: ELBO bounds log(evidence)

(likelihood-prior balance)



From edwardlib: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



The Game

• get  samples coming for fixed , - to be close to some 
prior, , typically chosen as an isotropic gaussian...the 
regulariza<on term

• first term is called "reconstruc<on loss", or "capacity of model to 
generate something like the data".



(from here)

https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-vaes-pt-1-9e5dbc205bd1


VAE steps for MNIST

• details in original paper and notebook

• linear encoder for both  and 

• then transforma5on to  to be able to take gradient inside 
expecta5on as in ADVI

• then decode using a loss: binary cross-entropy  (for 
images) minus KL

https://arxiv.org/pdf/1312.6114.pdf


class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)
        self.fc22 = nn.Linear(400, 20)
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()

    def encode(self, x):
        h1 = self.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparameterize(self, mu, logvar):
        if self.training:
            std = logvar.mul(0.5).exp_()
            eps = Variable(std.data.new(std.size()).normal_())
            return eps.mul(std).add_(mu)
        else:
            return mu

    def decode(self, z):
        h3 = self.relu(self.fc3(z))
        return self.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar



model = VAE()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
def loss_function(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, 
        x.view(-1, 784), size_average=False)
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())

    return BCE + KLD

def train(epoch):
    model.train()
    train_loss = 0
    for batch_idx, (data, _) in enumerate(train_loader):
        data = Variable(data)
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(data)
        loss = loss_function(recon_batch, data, mu, logvar)
        loss.backward()
        train_loss += loss.data[0]
        optimizer.step()
    return train_loss / len(train_loader.dataset)

def test(epoch):
    model.eval()
    test_loss = 0
    for i, (data, _) in enumerate(test_loader):
        data = Variable(data, volatile=True)
        recon_batch, mu, logvar = model(data)
        test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
    test_loss /= len(test_loader.dataset)
    return test_loss

Images from here

https://jmetzen.github.io/2015-11-27/vae.html


Disentanglement Issues

• can be understood from a gaussian 
mixtures perspec4ve

• we would prefer data locality

• thus crank up the prior (regulariza4on) 
term

• this is called the VAE



How to implement?

• possible in pytorch, also in pymc3

• see convolu6onal VAE for MNIST in pymc3

• no6ce that MNIST, which we did earlier as supervised is now 
being done unsupervised.

https://docs.pymc.io/notebooks/convolutional_vae_keras_advi.html


Why?

See pymc3 for e.g. for auto-encoding LDA

• varia&onal auto-encoders algorithm which allows us to perform 
inference efficiently for large datasets

• use tunable and flexible encoders such as mul&layer perceptrons (MLPs) 
as our varia&onal distribu&on to approximate complex varia&onal 
posterior

• then its just ADVI with mini-batch on PyMC3 or pytorch. Can use for any 
posterior, example LDA, or custom for MNIST

https://docs.pymc.io/notebooks/lda-advi-aevb.html

