Lecture 22

Model Comparison and Ensembling
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Decision Theory

Predictions (or actions based on predictions) are described by a utility or
loss function, whose values can be computed given the observed data.

Utility = -Loss = -Energy
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Point Predictions: squared loss

Sometimes we want to make point predictions. In this case a is a single
number.

squared error loss: I(a, y*) = (a — y*)?

The optimal point prediction that minimizes the expected loss (negative
expected utility):

[(a) = /dy* (a — y*)? p(y*| D, M),
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Is the posterior predictive mean:
a=FE,y"|.
The expected loss then becomes:
[(a) = /dy* (@ —y")’ p(y*|D, M) = /dy* (Eply*] — v*)* p(y"| D, M) = Vary[y']

Squared loss =— we dont care about skewness or kurtosis

This action a is called the Bayes Action.
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Process

First define the distribution-averaged utility:

a(a) = / deou(a, ) p(w|D)

We then find the ¢ that maximizes this utility:

d = argmax u(a)
a

This action is called the bayes action.
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The resulting maximized expected utility is given by:
(@) = a(@) = [ dwu(d,w) p(w|D).

sometimes referred to as the entropy function, and an associate
divergence can be defined:

d(a,p) — ﬂ(pap) N ’L_L(a,,p)

Then one can think of minimizing d(a, p) with respect to a to get a,
so that this discrepancy can be thought of as a loss function.
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Log score: probabilistic prediction

Here we want to find a distribution a.

The utility is defined as:
u(a,y”) = loga(y™),

The expected utility then is
a(a) = [ dy’ log(a(y")) oy’ D, M),
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The a that maximizes this utility is the predictive itself (in the
bayesian context, the posterior predictive)!

a(y") = p(y*|D, M)
Maximized utility: a(a) — / dy* log(p(y” | D, M)) p(y*| D, M),

This is just the negative entropy of the predictive distribution, and
the associated divergence is our old friend the KL-divergence.
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Back to Poisson GLMs

From Mcelreath:

The island societies of Oceania provide a natural
experiment in technological evolution. Different
historical island populations possessed tool kits of
different size. These kits include fish hooks, axes, boats,
hand plows, and many other types of tools. A number
of theories predict that larger populations will both
develop and sustain more complex tool kits. So the
natural variation in population size induced by natural
variation in island size in Oceania provides a natural
experiment to test these ideas. It's also suggested that
contact rates among populations effectively increase
population size, as it's relevant to technological
evolution. So variation in contact rates among Oceanic
societies is also relevant. (McElreath 313)
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Were the contacts really needed?

Let us compare models:

m2c_onlyic: loglam = alpha

m2c_onlyc: loglam = alpha + betac*df.clevel

m2c_onlyp: loglam = alpha + betap*df.logpop c

m2c_nopc: loglam = alpha + betap*df.logpop c + betac*df.clevel

mlc: loglam = alpha + betap*df.logpop c + betac*df.clevel + betapc*df.clevel*df.logpop_c
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& AM 20

SMALL World vs BIG World

Small World answers the question: given
a model class (i.e. a Hypothesis space,
whats the best model in it). It involves
parameters. Its model checking.

BIG World compares model spaces. Its
model comparison with or without
"hyperparameters".



Bayesian Inference works in the small world

Pp Pp

(some times includes the true generating process p;, or p or wp)
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Inference in the small world

Pp

we go from prior to posterior
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Bias and Variance

Pp Pp

Overfitting can occur even if the small world includes the true data generating
Process py.
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How to compare against py

In model comparison scenario we might use the "true" distribution:
u(a) = / dy*u(a,y" )pw (y")

Notice that we use u(a, y" ). The a has already been found by
optimizing over our posterior predictive.

But we dont know py;,. Does this remind you of something...?
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True-belief distribution

e the "p" we used in KL-divergence formulae eons ago
e thatis, the known or empirically estimated true distribution, or

e model M, that has undergone posterior predictive checks and is very
expressive, a model we can use as a reference model.

e often non-parametric or found via bayesian model averaging.

e if the true generating process is outside the hypothesis set of the models
you are using, true belief model never = true. This is called misfit or bias.
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Model comparison

The key idea in model comparison is that we will sort our average utilities
in some order. The exact values are not important, and may be computed
with respect to some true distribution or true-belief distribution My,.

Utility is maximized with respect to some model M, € H whereas
the average of the utility is computed with respect to either the

true belief distribution.
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ﬂ(Mk,@k) — /dy*u(&k,y*)P(y*\Da Mtb)

where a;, is the optimal prediction under the model M;.. Now we
compare the actions, that is, we want:

M = arg m]?,X ’U,(Mk, dk)

No calibration, but calculating the standard error of the difference
can be used to see if the difference is significant.
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The MSE or R? in regression problems...

For the squared loss the first step gives us G, = Ep,+p,a,) Y-
Then:

[ (di) = / dy* (a — )’ p(y* | D, M)

— /dy* (Epk Y] - y*)z p(y" | D, My,) = Vary, "] (Eptb 4] — E, [y*])z

We have bias if My, is not in our Hypothesis set .
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So far...
e Decisions are made on some validation or test set
e ensures that we dont use data twice

 while we are not picking hyper-parameters in the bayesian
scenario

o we are still maximizing utility/minimizing risk

e and furthermore choosing a "best" model according to this utility
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Information criteria

e we dont want to go out-of-sample

e use information criteria to decide between models
KL: Dk1(p, q) = Ep[log(p/q). sz log or / dPlOQ(%)

Use law or large numbers to replace the true distribution by
empirical estimate
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then DKL (p7 Q)
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— DKL (p7 ’l") —
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Deviance of a predictive

N

D(q) = - Ejpllog(q)]

We want to estimate the "true-belief" average of a predictive:

E, (log(pred(y*))]

where pred(y”) is the predictive for points y* on the test set or
future data.
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Do it pointwise instead

Call the expected log predictive density at a "new" point:
elpd; = Ep|log(pred(y; )]

Then the "expected log pointwise predictive density" is

elppd = Z E,[log(pred(y;))] = ) elpd;

1
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What predictive distribution pred do we use? We start from the

frequentist scenario of using the likelihood at the MLE for the AIC,
then move to using the likelihood at the posterior mean (a sort of

plug in approximation) for the DIC, and finally to the fully Bayesian
WAIC.

Specifically, in the first two cases, we are writing the predictive
distribution conditioned on a point estimate from the posterior:

elpd; = Ey[log(pred(y; | )]
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The game we will play in these first two cases is:

(1) Conditional on fixed @, the full predictive splits into a product

per point so the writing of elppd as a sum over pointwise elpd is
exact

(2) However we dont know p,, (or just p), so we use the empirical
distribution on the training set

(3) this underestimates the test set deviance as we learnt in the
case of the AIC, so we must apply a correction factor.
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deviance
48 50 52 54 56 58 60

AIC

Akaike Information Criterion, or AIC:

N =20 N =100
2 i AIC = Dyrgin + 2p
e - e . e ‘Q{4.1
2 \\\\’ ke 8 | *\
j Hoo w0 \ Dirain = —2 % log(p(y|9mle)
’ sa |16 [o7| & \
SE - A om=g=""C . . . .
N ol T ‘1  multivariate gaussian posterior
Wl 9 a9 |71 |85
2 ] - a e flat priors
1 2 3 4 5 1 2 3 4 5
number of parameters number of parameters

e data >> parameters

&AM 207



DIC

Uses the posterior distribution, calculable from MCMC, and assumes
multivariate gaussian posterior distribution.

Dirgin = —2 % lOg(p(ywpostmean), DIC = Dy, + 2DDpIC where
ppric = 2 * (log(p(y|Opostmean ) — Epost [log(p(y|6)]) (by monte carlo)

alternative fomulation for pp, guaranteed to be positive, is

PDic = 2 * Va'rpost [lOQ (p (y| epostmean ) )]
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Bayesian deviance

D(q) = —%Ep log(pp(y))] posterior predictive for points y* on the

test set or future data

replace joint pp over new points y by product of marginals:

elpd; = Ep[log(pp(y})]

1

elppd = Z E,[log(pp(y;))] = ) _ elpd;
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Game is to REPLACE

elppd = Z E,[log(pp(y}))] Where yi are new points

by the computed "log pointwise predictive density" (Ippd) in-
sample

lppd = log (pr(yg ) Zloy (P(Y;10)) 0t Zlog( > p(y;1, )

s~post
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* As we know now, is that the [ppd of observed datay is an
overestimate of the elppd for future data.

 Hence the planis to like to start with the [ipd and then apply

some sort of bias correction to get a reasonable estimate of
elppd.

This gives us the WAIC (Widely Applicable Information Criterion or
Watanable-Akaike Information Criterion)
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WAIC

WAIC = lppd + 2pw

where

pw = 2 Z (log(Epost [P(yi|0)] — Epost [log(p(yi|0))))

Once again this can be estimated by

D _ Varyos[log(p(y:|6))]
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Oceanic tools

Lets use the WAIC to compare models

m2c_onlyic: loglam = alpha

m2c_onlyc: loglam = alpha + betac*df.clevel

m2c_onlyp: loglam = alpha + betap*df.logpop c

m2c_nopc: loglam = alpha + betap*df.logpop c + betac*df.clevel

mlc: loglam = alpha + betap*df.logpop c + betac*df.clevel + betapc*df.clevel*df.logpop_c
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Centered

e dWAIC is the difference between each WAIC

w; —

MZc_nope and the lowest WAIC.
mic e SE is the standard error of the WAIC estimate.

m2c_onlyp e dSE is the standard error of the difference in
: WAIC between each model and the top-

m2c_on|yic i $ ranked mOdel.
I
I : !

m2c_onlyc : R~ — S——— exp(—5dWAIC;)
L

> exp(—3dWAIC))
75 100 125 150 175 200

Deviance read each weight as an estimated probability

that each model will perform best on future data.
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From McElreath, here is how to read this table:

1. WAIC is obviously WAIC for each model. Smaller WAIC indicates better estimated out-of-sample deviance.

2. pWAIC is the estimated effective number of parameters. This provides a clue as to how flexible each model
is in fitting the sample.

3. dWAIC is the difference between each WAIC and the lowest WAIC. Since only relative deviance matters,
this column shows the differences in relative fashion.

4. weight is the AKAIKE WEIGHT for each model. These values are transformed information criterion values.
I'll explain them below.

5. SE is the standard error of the WAIC estimate. WAIC is an estimate, and provided the sample size N is large
enough, its uncertainty will be well approximated by its standard error. So this SE value isn't necessarily
very precise, but it does provide a check against overconfidence in differences between WAIC values.

6. dSE is the standard error of the difference in WAIC between each model and the top-ranked model. So it is
missing for the top model.
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Uncentered

m2_nopc
WAIC |pWAIC |dWAIC |weight SE dSE warning m1
name
m2_nopc |79.1059 [4.22647 |0 0.61959 11.0612 (0 1 m2_on|yp
m1 80.3046 [5.03686 | 1.19871 [ 0.340258 11.3985 [0.571957 |1 |
m2_onlyp [84.5787 |3.84888 |5.47276 |0.0401523 |8.98146 |20.1717 |1 m2_0n|yic : _._é_
m2_onlyic | 141.327 |8.10745 |62.2212 | 1.90856e-14 | 31.6664 | 338.568 |1 ]
m2_onlyc |152.975 |18.1559 | 73.8689 |5.64512e-17 | 46.6488 |678.014 |1 m2_onlyc : _._é_
I

75 100 125 150 175
Deviance

interaction is overfit. centering decorrelates
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Counterfactual Posterior predictive

300
250
200
150

100

6 7 8 9 10 11 12 13
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Bayes Theorem in model space

p(My|D) o< p(D|My,)p(My)

where:

p(D|M;) = / 465 p(y|6r, My )p(6x| M)

Is the marginal likelihood under each model. Can use these "Bayes
Factors" to compare but high sensitivity to prior.
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Bayesian Model Averaging

pema(Y’|z", D) ZP “|z*, D, My )p(Mj|D)

where the averaging is with respect to weights w;, = p(M;|D), the
posterior probabilities of the models M,..

We will use the "Akaike" weights from the WAIC. This is called
pseudo-BMA
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Ensembling

e use WAIC based akaike weights for top
3

e regularizes down the green band at high
population by giving more weight to the
no-interaction model.
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e BMA is appropriate in the M-closed case, which is when the true generating process is one of

the models

 what we will use here is to estimate weights by the WAIC, following McElreath (pseudo-BMA)

e But see Yao et. al. which claims log-score stacking is better. Implemented in pymc3

n 1Y )~
|
max ; Zlogz wepyily—;, My )., st wi =0, Zwk = 1.
| k=1 k=1

=1
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https://arxiv.org/pdf/1704.02030.pdf

WAIC pWAIC

name
m2c_nopc 79.06
mic 84.09
m2c_onlyp 84.43
m2c_onlyic 141.65

m2c_onlyc 150.44
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4.24
7.05
3.75
8.38
16.94

dWAIC

0
5.04
5.37
62.6

71.38

Pseudo BMA vs stacking

weight SE

0.87 11.06
0.07 1219
0.06 8.94
0 317
0 4467

dSE

3.77
793
32.84
44.44

warning

name
m2c_nopc
mic
m2c_onlyp
m2c_onlyic

m2c_onlyc

WAIC pWAIC
79.06 4.24
84.09 7.05
84.43 3.75

141.65 8.38

150.44 16.94

dWAIC

0
5.04
5.37
62.6

71.38

weight SE

0.76 11.06
0 1218
0.24 894
0 317
0 4467

dSE

0
3.77
7.93

32.84
44.44

warning



..It Is tempting to use information criteria to
compare models with different likelihood functions.
Is a Gaussian or binomial better? Can't we just let
WAIC sort it out?

Unfortunately, WAIC (or any other information
criterion) cannot sort it out. The problem is that
deviance is part normalizing constant. The constant
affects the absolute magnitude of the deviance, but
It doesn't affect fit to data.

— McElreath
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How to handle non-nested models?

e cross-validation
e |ess data to fit so biased models

 we are not talking here about cross-validation to do
hyperparameter optimization

e specifically we will use Leave-One-Out-Cross-Validation
(LOOCV) with importance sampling
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LOOCV

e The idea here is that you fit a model on N-1 data points, and use
the Nth point as a validation point. Clearly this can be done in N
ways.

e the N-point and N-1 point posteriors are likely to be quite similar,
and one can sample one from the other by using importance
sampling.

E¢[h] = Zi w;?

~ where w, = f,/g,.
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Fit the full posterior once. Then we have

_ p(esw—i) ~ 1
© pBsly) T p(vilbs,y—i)

e the importance sampling weights can be unstable out in the tails.

e importance weights have a long right tail, pymc (pm. Loo) fits a
generalized pareto to the tail (largest 20% importance ratios) for
each held out data point i (a MLE fit). This smooths out any large
variations.
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elpdloo — Z log(p(y’t |y—’& ))

over the training sample.
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Oceanic tools LOOCV

m2c_nopc
m2c_onlyp
mic
m2c_onlyic

m2c_onlyc

100

125 150 175 200
Deviance



What should you use?

1. LOOCV and WAIC are fine. The former can be used for models not having the
same likelihood, the latter can be used with models having the same likelihood.

2. WAIC is fast and computationally less intensive, so for same-likelihood models

(especially nested models where you are really performing feature selection), it is
the first line of attack

3. One does not always have to do model selection. Sometimes just do posterior
predictive checks to see how the predictions are, and you might deem it fine.

4. For hierarchical models, WAIC is best for predictive performance within an existing
cluster or group. Cross validation is best for new observations from new groups
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