Lecture 21

Poisson GLMs to Gaussian
processes

@AM 207

Important Dates

* Project Due Tue Dec 11th 11.59PM

e Strongly encourage you to finish by Sat Dec 8th or Sun Dec 9th
by 11.59PM

e ..Or you might hurt your final...
 Final will be released Thu Dec 6th 11.59PM
 Final will be due Monday Dec 1/7th 11.59PM

@AM 207

Oceanic Tools

From Mcelreath:

The island societies of Oceania provide a natural
experiment in technological evolution. Different
historical island populations possessed tool kits of
different size. These kits include fish hooks, axes, boats,
hand plows, and many other types of tools. A number
of theories predict that larger populations will both
develop and sustain more complex tool kits. So the
natural variation in population size induced by natural
variation in island size in Oceania provides a natural
experiment to test these ideas. It's also suggested that
contact rates among populations effectively increase
population size, as it's relevant to technological
evolution. So variation in contact rates among Oceanic
societies is also relevant. (McElreath 313)

&AM 207

Model M1

T; ~ Poisson(\;)
log(\;) = a+ Bplog(P(c);) + BcCi + BpcCilog(P(c);)

a ~ N(0,100)
Bp ~ N(0,1)

Bc ~ N(0,1)
Bpc ~ N(0,1)

@AM 207

df.logpop _c = df.logpop - df.logpop.mean()
with pm.Model() as mlc:
betap = pm.Normal("betap", 0, 1)
betac = pm.Normal('"betac", 0, 1)
betapc = pm.Normal("betapc", 0, 1)
alpha = pm.Normal("alpha", @, 100)

Loglam = alpha + betap*df.logpop _c + betac*df.clevel + betapc*df.clevel*df.logpop c
y = pm.Poisson(''ntools", mu=t.exp(loglam), observed=df.total tools)

{'alpha': 7978.0, 'betac': 7898.0, 'betap': 13621.0, 'betapc': 17703.0}

@AM 207

alpha
w
w

1.0

betapc

Sbddooooo
COORERNONAE

2.38.8.8.3.3.8.8.68.7 -04.2.00.20.40.60.81.0 0.0510D162D2bIN3B4D45 -0-8-6-020.2.9.6.8.0

W 207

betac

betap

betapc

better constrained, less correlated, sampling faster and
better

clear effect of contact, effect of interaction not clear yet

will use model comparison next time for this!

betap betac
meanz@i263

0. 0.

010 015 020 025 030 035 040 045 -0.2 0.0 0.2 04 0.6 0.8 1.0
betapc
meapz0 066

0
-08 -06 -04 -02 00 02 04 06 08 29 30 31 32 33 34 35 36 37

Computing a Posterior Predictive

def trace _or_ zero(trace, name):
if name in trace.varnames:
return trace[name]
else:
return np.zeros(2¥len(trace))

def compute pp(lpgrid, trace, contact=0):
alphatrace = trace_or zero(trace, 'alpha')
betaptrace = trace_or_ zero(trace, 'betap')
betactrace = trace_or_zero(trace, 'betac')
betapctrace = trace_or_zero(trace, 'betapc')
tl=2*len(trace)
gl=lpgrid.shape[0]
lam = np.empty((gl, tl))
lpgrid _c = lpgrid - Llpgrid.mean()
for i, v in enumerate(lpgrid):
temp = alphatrace + betaptrace*lpgrid _c[i] + betactrace*contact + betapctrace*contact*lpgrid c[1i]
lam[i,:] = poisson.rvs(np.exp(temp))
return Lam

@AM 207

Counterfactual Posterior
predictive

lpgrid = np.linspace(6,13,30)

pplow = compute pp(lpgrid, tracelc)

pphigh = compute pp(lpgrid, tracelc, contact=1)

We compute the medians and the hpds, and plot these against the data

pplowmed
pplowhpd
pphighmed
pphighhpd

np.median(pplow, axis=1)
pm.stats.hpd(pplow.T)
np.median(pphigh, axis=1)
pm.stats.hpd(pphigh.T)

@AM 207

300

250

200

150

100

10

1

12

13

Overdispersion for only p:

log(X\;) = a + Bp(log(P(c);)

Model M2

T; ~ Poisson()\;)

m2c_onlyp: loglam =

ppvar/ppmean

array([1.30421519, 1.26489919,
1.19957498, 1.1793642 |,
1.09427345, 1.12326509,
1.10038695, 1.11064864,
1.15350445, 1.18526221,
1.41243637, 1.48317552,

@AM 207

alpha + betap*df.logpop _c

PR R R PR R

.2693647
.17456651,
.13490696,
.11575808,
.22732124,
.58211591,

N = Y == W SN

.20461164,
.14728935,
.09674559,
.11499395,
.29480132,
.67981142,

N G S N

.25536688,
.15605154,
.12324651,
.14792792,
.30994366,
.79674707]

300

250

200

150

100

10

1

12

13

Varying hierarchical intercepts model

with pm.Model() as m3c:
betap = pm.Normal('"betap", 0, 1)
alpha = pm.Normal("alpha", @, 100)
sigmasoc = pm.HalfCauchy("sigmasoc'", 1)
alphasoc = pm.Normal("alphasoc", @, sigmasoc, shape=df.shape[0])
Loglam = alpha + alphasoc + betap*df.logpop c
y = pm.Poisson(''ntools", mu=t.exp(loglam), observed=df.total tools)
trace3 = pm.sample(6000, tune=1000, nuts kwargs=dict(target accept=.95))

@AM 207

Hierarchical Model Posterior predictive

betap

VAN

-01 00 01 02 03 04 05 06 07 08
alpha

VAN

26 28 30 32 34 36 38 42
alphasoc

;.

-20 15 -10 -05 00
S|gmasoc

00 02 04 06 08

much wider, includes data areas

Frequency Frequency
f [SENRIRTNGTC

Frequency
OO NN

oo oO,m

=
(&)

Frequency

-
N
=
S

&AM 207

Sample value

0 1000 2000 3000 4000 5000
alpha

Sample value
NN LR

0 1000 2000 3000 4000 5000
alphasoc

Sample value
UL |

0 1000 2000 3000 4000 5000
sigmasoc

Sample value
OOOOO—d—s
|

0 1000 2000 3000 4000 5000

300

250

200

150

100

betap

alpha
alphasoc_ 0
alphasoc_ 1
alphasoc_ 2
alphasoc_ 3
alphasoc_ 4

alphasoc_ 5

alphasoc_ 6

alphasoc_ 7/

alphasoc_ 8

alphasoc_ 9
sigmasoc

@AM 207

mean

. 258089
. 446465
.209619
.038430
.050901
.524157
.039406
.320429
.144230
174227
.273610
.088533
.312019

wn
Q.

OO OO &

Trace Summary

.082296
.120746
. 247940
.219664
.195434
.189557
.175986
.208348
172236
.184070
.174185
.291865
.129527

mc_error

O OO OO OO

.001338
.002027
.0036388
.002941
.002468
.002763
.002227
.003087
.002496
.002252
.002854
.004870
.002224

hpd 2.5

.096656
.199103
. 718741
.404914
. 447657
.031798
.301135
. 733230
.168542
. 568739
.050347
.679972
.098244

hpd _97.5

O OO O OO OO WO

424239
.687472
.259506
. 487200
.339753
.699002
.401451
.055638
.513625
.162993
627762
. 487844
.588338

n_eff

4166.
3653.
4968.
5961.
5818.
4321.
6167 .
4967 .
5458.
6696 .
4248.
4385.
2907 .

OO OO &

Rhat

OO P OO0 O0OPFrRPR OO0 FroO O

.999973
.999921
. 000043
.999917
.999921
. 999929
. 000062
.999927
.999972
.999919
. 000032
.999929
.999981

Model Correlations

What if we model the correlation between societies based on the
distance between them?

How?
Replace independent intercepts by correlated ones.

Draw from a Multivariate Normal with a modeled covariance
matrix.

@AM 207

We can model society specific intercepts

for oceanic tools as draws from a O mean
MVN.

with pm.Model() as mgc:

betap = pm.Normal('"betap", 0, 1)

alpha = pm.Normal("alpha", @, 10)

etasq = pm.HalfCauchy('"etasq", 1)

rhosq = pm.HalfCauchy('"rhosq", 1)

means=tt.stack([0.0]*10)

sigma_matrix = tt.nlinalg.diag([©0.01]*10)

cov=tt.exp(-rhosg*dij*dij)*etasq + sigma_matrix

gammasoc = pm.MvNormal('"gammasoc", means,
cov=cov, shape=df.shape[0])

Loglam = alpha + gammasoc + betap*df.logpop c

y = pm.Poisson("ntools", mu=t.exp(loglam),
observed=df.total _tools)

mgctrace = pm.sample(10000, tune=2000,
nuts_ kwargs=dict(target accept=.95))

@AM 207

T; ~ Poisson(\;)
log Ai = & + Ysociery[i] + OplogP;

¥ ~ MVNormal((0,...,0),K)

K, = 7 exp(—2D3) + (001
a ~ Normal(0, 10)

Bp ~ Normal(0, 1)

1n° ~ HalfCauchy(0, 1)

p* ~ HalfCauchy(0, 1)

betap
alpha
gammasoc__©
gammasoc_ 1
gammasoc__ 2
gammasoc__ 3

gammasoc__ 4

gammasoc__5
gammasoc__6
gammasoc__/

gammasoc__ 8
gammasoc__9
etasq

rhosqg

@AM 207

mean

247414
.512649
. 269862
.117755
.165474
.299581
.026350
. 458827
.097538
.263660
.233544
.123068
. 354953
. 3063880

wn
Q.

OO OO OO OO

50.113269

Trace Summary

.116188
.357406
.455632
.445192
.430544
. 387140
.382587
. 389807
.577499
.378417
.361616
473731

660893

mc_error

O OO OO OO0

.001554
.007140
. 008620
.008520
.008116
.007481
.007425
.006976
. 007064
.006917
.006715
.006671
.009717
.343453

hpd 2.5

9.
. 790415
.239333
.041095
.042846
.481745
. 763338
.286453
.653992
.077743
.510818
.034810
.001437
.000437

005191

hpd_97.5

AP P OO OISO FrLr OO0 PMOS

. 474834
.239959
.607492
. 757448
.686170
.079855
. 770842
.231992
. 8400438
. 404521
.909164
.850175
.114851
.550517

n_eff

5471.
2111.
2569.
2439.
2406 .
2365.
2292.
2481.
2382.
2407 .
2407 .
3985.
4904 .
3112.

O OO OO OO0

Rhat

O R RPRRPRRRRRRRLRRLRRLRLR

.000157
.001964
.001484
.001758
.001881
.001936
.001728
.001517
.001464
.001890
.001721
. 000439
.000206
.999955

Covariance posteriors:

betap ® betap
> =1
< S 1.0
) 25 .
) £
(W 0.0 ©
- n
-025 000 025 050 075 100 0 2000 4000 6000 8000 10000
alpha
. P 3 0.8
©
c
S 1 E 50
o [
o) 25
£ 5
1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 06 '
gammasoc © gammasoc TR
> =) \
g @ 00 " |
o [« b |
Lg 5—2.5 R
0 n Ima® i W' - . .
-4 -2 0 2 0 2000 4000 6000 8000 10000 0.4 ~‘ \
etasq . etasq NN
2y = 50 k -3
5° >
(]
g 2
'IO 3 0 e ettt CISESETY
0 10 20 30 40 50 0 2000 4000 6000 8000 10000
rhosq o rhosq
~.0.1 g
2 $ 2000
= ©
4 :
Lt 0.0 g 0 'l Ul 1 ALLA
0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000

&AM 207

Median Inter-Society Correlation

@AM 207

Lets INVERT the
Idea and start with the

COVARIANCE

MVN Primer

1

p(e | %) = (2m) 2|z V2 exp{—§<x TR (e m}

e | 2 2y |
JOINT: p(z, v) zN(H o y)
My _E:I:y 2y i

MARGINAL: p(z) = [p(@, 9)dy = N (11, %)

CONDITIONAL: p(z | ¥) = N (s + T2y Ty (¥ — tty), B — Ty 2y 12T

@AM 207

The marginal for any sub-block is independent of the rest of the
matrix in the MVN!

@AM 207

Modeling co-variance via correlation

General expectation of continuity as you move from one adjacent
point to another. In the absence of significant noise, two adjacent
points ought to have fairly similar f values.

2 (—(CBZ _wj))

k(z;,z;) = orexp o

[is correlation length, a? amplitude.

@AM 207

#Correlation Kernel
def exp_kernel(x1l,x2, params):
amplitude=params[0]
scale=params[1]
return amplitude * amplitude*np.exp(-((x1-x2)**2) / (2.0%*scale))

#Covariance Matrix

covariance = lambda kernel, x1, x2, params: \
np.array([[kernel(xil, xi2, params) for xil in x17] for xi2 in x2])

Each curve in plots is generated as:

a=1.0
nsamps = 50
xx = np.linspace(0,20,nsamps)

#Create Covariance Matrix
sigma = covariance(exp_kernel,xx,xx, [a,ell]) + np.eye(nsamps)*le-06

#Draw samples from a @-mean gaussian with cov=sigma
samples = np.random.multivariate_normal(np.zeros(nsamps), sigma)

The greater the correlation length, the
smoother the curve.

&AM 207

What did we just do?

e we have not seen any data yet

e but we expect the function representing our data to have some
level of continuity

e thus we considered different PRIOR functions that might
represent our data

e as having come from MVNs with a covariance matrix based on
the correlation length we think we have

@AM 207

Now we see some data

The red curve represents one of these
"prior" functions from the calculation
above.

We have 3 red data points, so it would be
seem to be a prior curves consistent with
this data.

Consider the 3 red data points to have been
generated [ID from some regression
function f(z) (like w -) with some
univariate gaussian noise ¢ at each point,
that is a gaussian likelihood.

@AM 207

f(X)

10 ~

Basic Idea

 The regression curve is one of the prior curves
e it must be consistent with the data.

e Consider the curve as a point in a multi-dimensional space, a draw
from a multivariate gaussian with as many points as points on the
curve.

The regression curve f* and the data y are assumed to be from a joint
multivariate gaussian with the same form (kernel) of covariance matrix

@AM 207

&AM 207

JOINT:

worr=ne([#]]2 3] e (] [=)
-lu'f* | ng* Ef*f*) I) I)

MARGINAL: (1) = [p(f",9)dy = N (s K..)

CONDITIONAL.:
p(f* |y) =N (e + Ko (K + 02Dy —), Kuw — Ko (K +0°1) 1 KT)

where: K = K(z,z); Ky = K(z,2"); Ko = K(z*, ")

@AM 207

[=T7.

#"test" data 2
x_star = np.linspace(0,20,nsamps) #50 grid points

defining the training data

X = np.array([5.0, 10.0, 15.0]) # shape 3 1
f = np.array([1.0, -1.0, -2.0]).reshape(-1,1)
K = covariance(exp_kernel, x,x,[a,ell])
#shape 3,3 0
K_star = covariance(exp_kernel,x,x_star,[a,ell])
#shape 50, 3

-1
K_star_star = covariance(exp_kernel, x_star, x_star, [a,ell])
#shape 50,50
K_inv = np.linalg.inv(K) 2
#shape 3,3 N
mu_star = np.dot(np.dot(K_star, K_inv),f)
#shape 50

-3
sigma_star = K_star_star - np.dot(np.dot(K_star, K_inv),K_ star.T)
#shape 50, 50
for i in range(10): -4

samples = np.random.multivariate_normal(mu_star.flatten(), sigma_star) 0 5 10 15

plt.plot(x_star, samples)

&AM 207

Predictive 1

e we are left with a smaller infinity of
prior functions consistent with the data

1 P aRRLS e these are our possible regression
d functions
O [o
RS e here we show the area these regression
1 Lel U functions cover
. .0. plt.plot(x_star, mu_star, '.')
-2 = SEEERE. plt.errorbar(x_star, mu_star,

yerr=1.96*np.sqrt(sigma_star.diagonal()), alpha=0.3);

@AM 207

2 main concepts:

conditional equals predictive
marginal block Is independent

@AM 207

p(f* |y) =N (ue + Ko (K +0°1) " (y — p), Kuw — Ku(K 40 I) T K])

EQUALS Predictive

Predictive 2: add noise for
p(y* | v)

Now let’'s add some noise to our scenario.

We assume y = f(z) +¢€, € ~ N(0,0°)

sigma_epsilon_sq = 0.05

K_noise = K + np.diag([sigma_epsilon_sq] * K.shape[0])
K noise_inv = np.linalg.inv(K_noise)

mu_star noise = np.dot(np.dot(K_star, K noise _inv),f)

sigma_star noise = K _star star -
np.dot(np.dot(K_star, K _noise_inv),K _star.T)

plt.plot(x_star, mu_star noise, '.')
plt.errorbar(x_star, mu_star noise,

yerr=1.96*np.sqrt(sigma_star_noise.diagonal()), alpha=0.3);

@AM 207

10

15

So far

. We built a covariance matrix from a kernel function
. Use the covariance matrix to generate a "curve" as a point in a multi-dimensional space from a MVN

. multiple such curves serve as prior fits for our data

O ¢ I S N

. now we bring in the data and condition on it (with noise added if needed) using normal distribution
formulae

O

. the conditional has the form of a predictive and we are done

6. Also notice that the marginal only has quantities from the predictive block. This means that we dont
care about the size of the original block in calculating the marginal.

These observations are the building blocks of the GP.

@AM 207

KEY CONCEPT 2:

MARGINAL IS DECOUPLED

...for the marginal of a gaussian, only the covariance of the block of the
matrix involving the unmarginalized dimensions matters! Thus "if you
ask only for the properties of the function (you are fitting to the data) at
a finite number of points, then inference in the Gaussian process will
give you the same answer if you ignore the infinitely many other points,
as if you would have taken them all into account!”
-Rasmunnsen

@AM 207

Use infinite gaussians!

10 ~

e think of the function as an infinite

vector.

 Draw f from some 'infinite' gaussian 67
distribution with some mean and some g s
kernel. ol
This then is the Gaussian Process,
which we use to set a prior on the 27
space of functions. LT

@AM 207

Back to our formulae...

JOINT:

. AR] [K
p(f7 f) — N 9 — N (9
(g _E?fm 2 p fo< _) oo | LKG

MARGINAL:
p(f) = / p(f, £)df> = N(us, K)

where: K = K(z,2); Koo = K(2,2%°); Koooo = K (x>, z%)

@AM 207

Definition of Gaussian Process

Assume we have this function vector
f=(f(z1),...f(x,)). If, for ANY choice of input points, (z1,...,z,), the marginal distribution over f:

P(F)= [P(f)df
f2F

is multi-variate Gaussian, then the distribution P(f) over the function f is said to be a Gaussian Process.

We write a Gaussian Process thus:
f(z) ~ GP(m(z), k(z, z!))

where the mean and covariance functions can be thought of as the infinite dimensional mean vector and covariance matrix respectively.

@AM 207

a Gaussian Process defines a prior distribution over functions!

Once we have seen some data, this prior can be converted to a

posterior over functions, thus restricting the set of functions that
we can use based on the data.

So: consider every possible function and associate a prior
probability with this function. e.g. assign smoother functions higher

prior probability. But how are we possibly going to calculate over
an uncountably infinite set of functions in finite time?

@AM 207

Size of the other block DOES NOT MATTER

Since the size of the "other" block of the matrix does not matter,
we can do inference from a finite set of points.

Any m observations in an arbitrary dataset, y = y1,...,y, = m
can always be represented as a single point sampled from some m-
variate Gaussian distribution. Thus, we can work backwards to
'‘partner’ a GP with a data set, by marginalizing over the infinitely-
many variables that we are not interested in, or have not observed.

@AM 207

ftp://ftp.tuebingen.mpg.de/pub/ebio/chrisd/GPtutorial.pdf

GP regression

Using a Gaussian process as a prior for our model, and a Gaussian as our
data likelihood, then we can construct a Gaussian process posterior.

Likelihood: y| f(z), z ~ N (f(x), o I) where the infinite f(z) takes the place
of the parameters.

Prior: f(z) ~ GP(m(z) = 0, k(z, z/))

Infinite normal posterior process: f(z)|y ~ GP(Mpost , Kpost (T, X!)).
(Kinda like a conjugate prior!)

@AM 207

GP regression posterior

The posterior distribution for f is:

(21, 2)[k(z, z) + 0”1 Ty
(zt, z1) — k(zt, z)[k(z,) + oI 1 k(z, 2/)

Posterior predictive distribution for f(z,) for a test vector input z., given a training set X with values y for the
GPis:

m, — k(w*,X)[k(XT,X) + 0'2-[]_1’3/
ke = k(zy,) — k(z,, XT)[R(XT, X) + I (X1, 2,)

The predictive distribution of test targets y+ : add ¢*1I to k..

@AM 207

What did we do

e usually in a parametric model we had some m (small) number of
parameters

e but here our covariance functions are NxN !

 no free lunch: calculation involves inverting a NxN matrix as in
the kernel space representation of regression.

e cannot thus handle large data if no approximations are used

@AM 207

How do we represent priors?

KERNELS for covariance matrices!

Can compose kernels.
Examples: exponential, cosine, matern, etc

Then the infinite functions are again parametrized by finite number
of kernel parameters.

@AM 207

Covariance Kernels (rowl: exp, m32 row2: m52, cos)

&AM 207

Setting up the model

with pm.Model() as model:

priors on the covariance function hyperparameters

L = pm.Uniform('Ll"', @, 10)

uninformative prior on the function variance

s2 £ = pm.HalfCauchy('s2 f', beta=10)

uninformative prior on the nolise variance

s2 n = pm.HalfCauchy('sZ2 n', beta=5)

covariance functions for the function f and the noise

f cov = s2 £**¥2 * pm.gp.cov.ExpQuad(l, 1)

mgp = pm.gp.Marginal(cov_func=f cov)

y_obs = mgp.marginal Llikelihood('y obs',
X=xtrain.reshape(-1,1), y=ytrain, noise=sZ2 n,
is observed=True)

&AM 207

How do we sample? Use the Marginal!

Posterior-predictive distribution, as a function of hyper parameters
m:

p(y*|D,n) = / do p(y*|0) p(6| D, n)

A likelihood with parameters n and simply use maximum-likelihood
with respect to n to estimate these n using our "data" ¢

@AM 207

INFERENCE

Want the marginal likelihood: p(y|X) = /p(y\f, X)p(f|X)df
f

The Marginal likelihood given a GP prior and a gaussian likelihood is
just the marginal for a finite MVN!

n 1 1
log p(y|X) = — - log2m — —log K+ o°I| — §yT(K + o)y

@AM 207

MAP-2 Fitting in pymc3

with model:
marginal_post = pm.find_MAP()

{'Ll': array(1.438152008/90554),
'l _interval_ ': array(-1.7839/733342616466),

's2 f£': array(2.04/7/500439200898),
's2 n': array(0.3465300514941838)}

@AM 207

How do we predict? Use the conditional!

e we used the marginal (which was the marginal likelihood) as the
likelihood in our model

e ultimately we want to predict

e once we have traces for the kernel parameters, we need to use
each tracepoint

e to draw a sample from the conditional

e thats it!

@AM 207

MCMC

with model:
trace = pm.sample(10000, tune=2000, l

o |
nuts_kwargs={'target_accept':0.85}) gos 4//\\\\‘ %5
with model: Eﬁo 'go | | | | | |

fpred = mgp.conditional("fpred", 0 2 4 6 8 ® 0 2000 4000 6000 8000 10000
Xnew = X _pred.reshape(-1,1), _ s2_f ® s2_f
pred_noise=False) §a2 /\\\“ S .

ypred = mgp.conditional("ypred", £ 00 g'o | I [| |
Xnew = X_pred . reshape(-1 ; 1) ; 0 10 20 30 40 n 0 2000 4000 6000 8000 10000

pred _noise=True) s2_n s2_n

gp_samples = pm.sample_ ppc(trace,
vars=[fpred, ypred],
samples=200)

2000 4000 6000 8000 10000

Frequency
o N

Sample value
o N

o

&AM 207

&AM 207

Posterior (predictive) curves

Posterior predictive distribution

noisy realization
® frain pts
- actual
-4 = predicted

0 2 - 6 8

10

Where are GPs used?

e geostatistics with kriging, oil exploration
e spatial statistics
e as an interpolator (O noise case) in weather simulations

e they are equivalent to many machine learning models such as kernelized regression, SVM and neural
networks (some)

e ecology since model uncertainty is high
e they are the start of non-parametric regression
e time series analysis (see cover of BDA)

e because of the composability of kernels, in automates statistical analysis (see the automatic statistician)

@AM 207

