
Lecture 21

Poisson GLMs to Gaussian
processes

Important Dates

• Project Due Tue Dec 11th 11.59PM

• Strongly encourage you to finish by Sat Dec 8th or Sun Dec 9th
by 11.59PM

• ...or you might hurt your final...

• Final will be released Thu Dec 6th 11.59PM

• Final will be due Monday Dec 17th 11.59PM

Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a natural
experiment in technological evolu-on. Different

historical island popula-ons possessed tool kits of
different size. These kits include fish hooks, axes, boats,
hand plows, and many other types of tools. A number

of theories predict that larger popula-ons will both
develop and sustain more complex tool kits. So the

natural varia-on in popula-on size induced by natural
varia-on in island size in Oceania provides a natural

experiment to test these ideas. It's also suggested that
contact rates among popula-ons effec-vely increase

popula-on size, as it's relevant to technological
evolu-on. So varia-on in contact rates among Oceanic

socie-es is also relevant. (McElreath 313)

Model M1

df.logpop_c = df.logpop - df.logpop.mean()
with pm.Model() as m1c:
 betap = pm.Normal("betap", 0, 1)
 betac = pm.Normal("betac", 0, 1)
 betapc = pm.Normal("betapc", 0, 1)
 alpha = pm.Normal("alpha", 0, 100)
 loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c
 y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

{'alpha': 7978.0, 'betac': 7898.0, 'betap': 13621.0, 'betapc': 17703.0}

• be$er constrained, less correlated, sampling faster and
be$er

• clear effect of contact, effect of interac6on not clear yet

• will use model comparison next 6me for this!

Compu&ng a Posterior Predic&ve

def trace_or_zero(trace, name):
 if name in trace.varnames:
 return trace[name]
 else:
 return np.zeros(2*len(trace))

def compute_pp(lpgrid, trace, contact=0):
 alphatrace = trace_or_zero(trace, 'alpha')
 betaptrace = trace_or_zero(trace, 'betap')
 betactrace = trace_or_zero(trace, 'betac')
 betapctrace = trace_or_zero(trace, 'betapc')
 tl=2*len(trace)
 gl=lpgrid.shape[0]
 lam = np.empty((gl, tl))
 lpgrid_c = lpgrid - lpgrid.mean()
 for i, v in enumerate(lpgrid):
 temp = alphatrace + betaptrace*lpgrid_c[i] + betactrace*contact + betapctrace*contact*lpgrid_c[i]
 lam[i,:] = poisson.rvs(np.exp(temp))
 return lam

Counterfactual Posterior
predic2ve

lpgrid = np.linspace(6,13,30)
pplow = compute_pp(lpgrid, trace1c)
pphigh = compute_pp(lpgrid, trace1c, contact=1)
We compute the medians and the hpds, and plot these against the data

pplowmed = np.median(pplow, axis=1)
pplowhpd = pm.stats.hpd(pplow.T)
pphighmed = np.median(pphigh, axis=1)
pphighhpd = pm.stats.hpd(pphigh.T)

Overdispersion for only p:
Model M2

m2c_onlyp: loglam = alpha + betap*df.logpop_c

ppvar/ppmean
array([1.30421519, 1.26489919, 1.2693647 , 1.20461164, 1.25536688,
 1.19957498, 1.1793642 , 1.17456651, 1.14728935, 1.15605154,
 1.09427345, 1.12326509, 1.13490696, 1.09674559, 1.12324651,
 1.10038695, 1.11064864, 1.11575808, 1.11499395, 1.14792792,
 1.15350445, 1.18526221, 1.22732124, 1.29480132, 1.30994366,
 1.41243637, 1.48317552, 1.58211591, 1.67981142, 1.79674707]

Varying hierarchical intercepts model

with pm.Model() as m3c:
 betap = pm.Normal("betap", 0, 1)
 alpha = pm.Normal("alpha", 0, 100)
 sigmasoc = pm.HalfCauchy("sigmasoc", 1)
 alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
 loglam = alpha + alphasoc + betap*df.logpop_c
 y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)
 trace3 = pm.sample(6000, tune=1000, nuts_kwargs=dict(target_accept=.95))

Hierarchical Model Posterior predic1ve

much wider, includes data areas

Trace Summary

 mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

 betap 0.258089 0.082296 0.001338 0.096656 0.424239 4166.0 0.999973
 alpha 3.446465 0.120746 0.002027 3.199103 3.687472 3653.0 0.999921
alphasoc__0 -0.209619 0.247940 0.003688 -0.718741 0.259506 4968.0 1.000043
alphasoc__1 0.038430 0.219664 0.002941 -0.404914 0.487200 5961.0 0.999917
alphasoc__2 -0.050901 0.195434 0.002468 -0.447657 0.339753 5818.0 0.999921
alphasoc__3 0.324157 0.189557 0.002763 -0.031798 0.699002 4321.0 0.999929
alphasoc__4 0.039406 0.175986 0.002227 -0.301135 0.401451 6167.0 1.000062
alphasoc__5 -0.320429 0.208348 0.003087 -0.733230 0.055638 4967.0 0.999927
alphasoc__6 0.144230 0.172236 0.002496 -0.168542 0.513625 5458.0 0.999972
alphasoc__7 -0.174227 0.184070 0.002252 -0.568739 0.162993 6696.0 0.999919
alphasoc__8 0.273610 0.174185 0.002854 -0.050347 0.627762 4248.0 1.000032
alphasoc__9 -0.088533 0.291865 0.004870 -0.679972 0.487844 4385.0 0.999929
 sigmasoc 0.312019 0.129527 0.002224 0.098244 0.588338 2907.0 0.999981

Model Correla*ons

What if we model the correla0on between socie0es based on the
distance between them?

How?

Replace independent intercepts by correlated ones.

Draw from a Mul,variate Normal with a modeled covariance
matrix.

We can model society specific intercepts
for oceanic tools as draws from a 0 mean
MVN.

with pm.Model() as mgc:
 betap = pm.Normal("betap", 0, 1)
 alpha = pm.Normal("alpha", 0, 10)
 etasq = pm.HalfCauchy("etasq", 1)
 rhosq = pm.HalfCauchy("rhosq", 1)
 means=tt.stack([0.0]*10)
 sigma_matrix = tt.nlinalg.diag([0.01]*10)
 cov=tt.exp(-rhosq*dij*dij)*etasq + sigma_matrix
 gammasoc = pm.MvNormal("gammasoc", means,
 cov=cov, shape=df.shape[0])
 loglam = alpha + gammasoc + betap*df.logpop_c
 y = pm.Poisson("ntools", mu=t.exp(loglam),
 observed=df.total_tools)
 mgctrace = pm.sample(10000, tune=2000,
 nuts_kwargs=dict(target_accept=.95))

Trace Summary

 mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

 betap 0.247414 0.116188 0.001554 0.005191 0.474834 5471.0 1.000157
 alpha 3.512649 0.357406 0.007140 2.790415 4.239959 2111.0 1.001964
gammasoc__0 -0.269862 0.455632 0.008620 -1.239333 0.607492 2569.0 1.001484
gammasoc__1 -0.117755 0.445192 0.008520 -1.041095 0.757448 2439.0 1.001758
gammasoc__2 -0.165474 0.430544 0.008116 -1.042846 0.686170 2406.0 1.001881
gammasoc__3 0.299581 0.387140 0.007481 -0.481745 1.079855 2365.0 1.001936
gammasoc__4 0.026350 0.382587 0.007425 -0.763338 0.770842 2292.0 1.001728
gammasoc__5 -0.458827 0.389807 0.006976 -1.286453 0.231992 2481.0 1.001517
gammasoc__6 0.097538 0.377499 0.007064 -0.653992 0.840048 2382.0 1.001464
gammasoc__7 -0.263660 0.378417 0.006917 -1.077743 0.404521 2407.0 1.001890
gammasoc__8 0.233544 0.361616 0.006715 -0.510818 0.909164 2407.0 1.001721
gammasoc__9 -0.123068 0.473731 0.006671 -1.034810 0.850175 3985.0 1.000439
 etasq 0.354953 0.660893 0.009717 0.001437 1.114851 4904.0 1.000206
 rhosq 2.306880 30.113269 0.343453 0.000437 4.550517 8112.0 0.999955

Covariance posteriors:

Median Inter-Society Correla2on

Lets INVERT the
idea and start with the
COVARIANCE

MVN Primer

JOINT:

MARGINAL:

CONDITIONAL:

The marginal for any sub-block is independent of the rest of the
matrix in the MVN!

Modeling co-variance via correla/on

General expecta,on of con,nuity as you move from one adjacent
point to another. In the absence of significant noise, two adjacent
points ought to have fairly similar values.

 is correla*on length, amplitude.

#Correlation Kernel
def exp_kernel(x1,x2, params):
 amplitude=params[0]
 scale=params[1]
 return amplitude * amplitude*np.exp(-((x1-x2)**2) / (2.0*scale))

#Covariance Matrix
covariance = lambda kernel, x1, x2, params: \
 np.array([[kernel(xi1, xi2, params) for xi1 in x1] for xi2 in x2])

Each curve in plots is generated as:
a = 1.0
nsamps = 50
xx = np.linspace(0,20,nsamps)

#Create Covariance Matrix
sigma = covariance(exp_kernel,xx,xx, [a,ell]) + np.eye(nsamps)*1e-06

#Draw samples from a 0-mean gaussian with cov=sigma
samples = np.random.multivariate_normal(np.zeros(nsamps), sigma)

The greater the correla,on length, the
smoother the curve.

What did we just do?

• we have not seen any data yet

• but we expect the func4on represen4ng our data to have some
level of con4nuity

• thus we considered different PRIOR func4ons that might
represent our data

• as having come from MVNs with a covariance matrix based on
the correla4on length we think we have

Now we see some data

The red curve represents one of these
"prior" func2ons from the calcula2on
above.

We have 3 red data points, so it would be
seem to be a prior curves consistent with
this data.

Consider the 3 red data points to have been
generated IID from some regression
func8on (like) with some
univariate gaussian noise at each point,
that is a gaussian likelihood.

Basic Idea
• The regression curve is one of the prior curves

• it must be consistent with the data.

• Consider the curve as a point in a mul:-dimensional space, a draw
from a mul+variate gaussian with as many points as points on the
curve.

The regression curve and the data are assumed to be from a joint
mul6variate gaussian with the same form (kernel) of covariance matrix

JOINT:

MARGINAL:

CONDITIONAL:

where:

.
#"test" data
x_star = np.linspace(0,20,nsamps) #50 grid points

defining the training data
x = np.array([5.0, 10.0, 15.0]) # shape 3
f = np.array([1.0, -1.0, -2.0]).reshape(-1,1)

K = covariance(exp_kernel, x,x,[a,ell])
#shape 3,3

K_star = covariance(exp_kernel,x,x_star,[a,ell])
#shape 50, 3

K_star_star = covariance(exp_kernel, x_star, x_star, [a,ell])
#shape 50,50

K_inv = np.linalg.inv(K)
#shape 3,3

mu_star = np.dot(np.dot(K_star, K_inv),f)
#shape 50

sigma_star = K_star_star - np.dot(np.dot(K_star, K_inv),K_star.T)
#shape 50, 50

for i in range(10):
 samples = np.random.multivariate_normal(mu_star.flatten(), sigma_star)
 plt.plot(x_star, samples)

Predic've 1

• we are le(with a smaller infinity of
prior func6ons consistent with the data

• these are our possible regression
func6ons

• here we show the area these regression
func6ons cover

plt.plot(x_star, mu_star, '.')
plt.errorbar(x_star, mu_star,
 yerr=1.96*np.sqrt(sigma_star.diagonal()), alpha=0.3);

2 main concepts:
condi&onal equals predic&ve
marginal block is independent

Condi&onal
EQUALS Predic.ve

Predic've 2: add noise for

Now let’s add some noise to our scenario.

We assume ,

sigma_epsilon_sq = 0.05

K_noise = K + np.diag([sigma_epsilon_sq] * K.shape[0])
K_noise_inv = np.linalg.inv(K_noise)

mu_star_noise = np.dot(np.dot(K_star, K_noise_inv),f)

sigma_star_noise = K_star_star -
 np.dot(np.dot(K_star, K_noise_inv),K_star.T)

plt.plot(x_star, mu_star_noise, '.')
plt.errorbar(x_star, mu_star_noise,
 yerr=1.96*np.sqrt(sigma_star_noise.diagonal()), alpha=0.3);

So far

1. We built a covariance matrix from a kernel func5on

2. Use the covariance matrix to generate a "curve" as a point in a mul5-dimensional space from a MVN

3. mul5ple such curves serve as prior fits for our data

4. now we bring in the data and condi5on on it (with noise added if needed) using normal distribu5on
formulae

5. the condi5onal has the form of a predic5ve and we are done

6. Also no5ce that the marginal only has quan55es from the predic5ve block. This means that we dont
care about the size of the original block in calcula5ng the marginal.

These observa+ons are the building blocks of the GP.

KEY CONCEPT 2:

MARGINAL IS DECOUPLED
...for the marginal of a gaussian, only the covariance of the block of the
matrix involving the unmarginalized dimensions ma:ers! Thus "if you

ask only for the proper?es of the func?on (you are fiBng to the data) at
a finite number of points, then inference in the Gaussian process will

give you the same answer if you ignore the infinitely many other points,
as if you would have taken them all into account!"

-Rasmunnsen

Use infinite gaussians!

• think of the func-on as an infinite
vector.

• Draw from some 'infinite' gaussian
distribu5on with some mean and some
kernel.

This then is the Gaussian Process,
which we use to set a prior on the
space of func5ons.

Back to our formulae...

JOINT:

MARGINAL:

where:

Defini&on of Gaussian Process

Assume we have this func0on vector
. If, for ANY choice of input points, , the marginal distribu0on over :

is mul'-variate Gaussian, then the distribu'on over the func'on is said to be a Gaussian Process.

We write a Gaussian Process thus:

where the mean and covariance func1ons can be thought of as the infinite dimensional mean vector and covariance matrix respec1vely.

a Gaussian Process defines a prior distribu2on over func2ons!

Once we have seen some data, this prior can be converted to a
posterior over func6ons, thus restric6ng the set of func6ons that
we can use based on the data.

So: consider every possible func3on and associate a prior
probability with this func3on. e.g. assign smoother func3ons higher
prior probability. But how are we possibly going to calculate over
an uncountably infinite set of func3ons in finite 3me?

Size of the other block DOES NOT MATTER

Since the size of the "other" block of the matrix does not ma6er,
we can do inference from a finite set of points.

Any observa,ons in an arbitrary data set,
can always be represented as a single point sampled from some -
variate Gaussian distribu,on. Thus, we can work backwards to
'partner' a GP with a data set, by marginalizing over the infinitely-
many variables that we are not interested in, or have not observed.

ftp://ftp.tuebingen.mpg.de/pub/ebio/chrisd/GPtutorial.pdf

GP regression

Using a Gaussian process as a prior for our model, and a Gaussian as our
data likelihood, then we can construct a Gaussian process posterior.

Likelihood: where the infinite takes the place
of the parameters.

Prior:

Infinite normal posterior process:
(Kinda like a conjugate prior!)

GP regression posterior

The posterior distribu.on for f is:

Posterior predic,ve distribu,on for for a test vector input , given a training set X with values y for the
GP is:

The predic*ve distribu*on of test targets y∗ : add to .

What did we do

• usually in a parametric model we had some (small) number of
parameters

• but here our covariance func9ons are NxN !

• no free lunch: calcula9on involves inver9ng a NxN matrix as in
the kernel space representa9on of regression.

• cannot thus handle large data if no approxima9ons are used

How do we represent priors?

KERNELS for covariance matrices!

Can compose kernels.

Examples: exponen-al, cosine, matern, etc

Then the infinite func,ons are again parametrized by finite number
of kernel parameters.

Covariance Kernels (row1: exp, m32 row2: m52, cos)

Se#ng up the model

with pm.Model() as model:
 # priors on the covariance function hyperparameters
 l = pm.Uniform('l', 0, 10)
 # uninformative prior on the function variance
 s2_f = pm.HalfCauchy('s2_f', beta=10)
 # uninformative prior on the noise variance
 s2_n = pm.HalfCauchy('s2_n', beta=5)
 # covariance functions for the function f and the noise
 f_cov = s2_f**2 * pm.gp.cov.ExpQuad(1, l)
 mgp = pm.gp.Marginal(cov_func=f_cov)
 y_obs = mgp.marginal_likelihood('y_obs',
 X=xtrain.reshape(-1,1), y=ytrain, noise=s2_n,
 is_observed=True)

How do we sample? Use the Marginal!

Posterior-predic,ve distribu,on, as a func,on of hyper parameters
:

A likelihood with parameters and simply use maximum-likelihood
with respect to to es7mate these using our "data"

INFERENCE

Want the marginal likelihood:

The Marginal likelihood given a GP prior and a gaussian likelihood is
just the marginal for a finite MVN!

MAP-2 Fi)ng in pymc3

with model:
 marginal_post = pm.find_MAP()

{'l': array(1.438132008790354),
 'l_interval__': array(-1.7839733342616466),
 's2_f': array(2.047500439200898),
 's2_n': array(0.3465300514941838)}

How do we predict? Use the condi1onal!

• we used the marginal (which was the marginal likelihood) as the
likelihood in our model

• ul6mately we want to predict

• once we have traces for the kernel parameters, we need to use
each tracepoint

• to draw a sample from the condi6onal

• thats it!

MCMC

with model:
 trace = pm.sample(10000, tune=2000,
 nuts_kwargs={'target_accept':0.85})
 with model:
 fpred = mgp.conditional("fpred",
 Xnew = x_pred.reshape(-1,1),
 pred_noise=False)
 ypred = mgp.conditional("ypred",
 Xnew = x_pred.reshape(-1,1),
 pred_noise=True)
 gp_samples = pm.sample_ppc(trace,
 vars=[fpred, ypred],
 samples=200)

Posterior (predic-ve) curves

Where are GPs used?

• geosta(s(cs with kriging, oil explora(on

• spa(al sta(s(cs

• as an interpolator (0 noise case) in weather simula(ons

• they are equivalent to many machine learning models such as kernelized regression, SVM and neural
networks (some)

• ecology since model uncertainty is high

• they are the start of non-parametric regression

• (me series analysis (see cover of BDA)

• because of the composability of kernels, in automates sta(s(cal analysis (see the automa(c sta(s(cian)

