
Lecture 21

Poisson GLMs to Gaussian 
processes



Important Dates

• Project Due Tue Dec 11th 11.59PM

• Strongly encourage you to finish by Sat Dec 8th or Sun Dec 9th 
by 11.59PM 

• ...or you might hurt your final...

• Final will be released Thu Dec 6th 11.59PM

• Final will be due Monday Dec 17th 11.59PM



Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a natural 
experiment in technological evolu-on. Different 

historical island popula-ons possessed tool kits of 
different size. These kits include fish hooks, axes, boats, 
hand plows, and many other types of tools. A number 

of theories predict that larger popula-ons will both 
develop and sustain more complex tool kits. So the 

natural varia-on in popula-on size induced by natural 
varia-on in island size in Oceania provides a natural 

experiment to test these ideas. It's also suggested that 
contact rates among popula-ons effec-vely increase 

popula-on size, as it's relevant to technological 
evolu-on. So varia-on in contact rates among Oceanic 

socie-es is also relevant. (McElreath 313)



Model M1



df.logpop_c = df.logpop - df.logpop.mean()
with pm.Model() as m1c:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

{'alpha': 7978.0, 'betac': 7898.0, 'betap': 13621.0, 'betapc': 17703.0}



• be$er constrained, less correlated, sampling faster and 
be$er

• clear effect of contact, effect of interac6on not clear yet

• will use model comparison next 6me for this!



Compu&ng a Posterior Predic&ve

def trace_or_zero(trace, name):
    if name in trace.varnames:
        return trace[name]
    else:
        return np.zeros(2*len(trace))

def compute_pp(lpgrid, trace, contact=0):
    alphatrace = trace_or_zero(trace, 'alpha')
    betaptrace = trace_or_zero(trace, 'betap')
    betactrace = trace_or_zero(trace, 'betac')
    betapctrace = trace_or_zero(trace, 'betapc')
    tl=2*len(trace)
    gl=lpgrid.shape[0]
    lam = np.empty((gl, tl))
    lpgrid_c = lpgrid - lpgrid.mean()
    for i, v in enumerate(lpgrid):
        temp = alphatrace + betaptrace*lpgrid_c[i] + betactrace*contact + betapctrace*contact*lpgrid_c[i]
        lam[i,:] = poisson.rvs(np.exp(temp))
    return lam



Counterfactual Posterior 
predic2ve

lpgrid = np.linspace(6,13,30)
pplow = compute_pp(lpgrid, trace1c)
pphigh = compute_pp(lpgrid, trace1c, contact=1)
We compute the medians and the hpds, and plot these against the data

pplowmed = np.median(pplow, axis=1)
pplowhpd = pm.stats.hpd(pplow.T)
pphighmed = np.median(pphigh, axis=1)
pphighhpd = pm.stats.hpd(pphigh.T)



Overdispersion for only p: 
Model M2

m2c_onlyp: loglam = alpha + betap*df.logpop_c

ppvar/ppmean
array([ 1.30421519,  1.26489919,  1.2693647 ,  1.20461164,  1.25536688,
        1.19957498,  1.1793642 ,  1.17456651,  1.14728935,  1.15605154,
        1.09427345,  1.12326509,  1.13490696,  1.09674559,  1.12324651,
        1.10038695,  1.11064864,  1.11575808,  1.11499395,  1.14792792,
        1.15350445,  1.18526221,  1.22732124,  1.29480132,  1.30994366,
        1.41243637,  1.48317552,  1.58211591,  1.67981142,  1.79674707]



Varying hierarchical intercepts model

with pm.Model() as m3c:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    sigmasoc = pm.HalfCauchy("sigmasoc", 1)
    alphasoc = pm.Normal("alphasoc", 0, sigmasoc, shape=df.shape[0])
    loglam = alpha + alphasoc + betap*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)
    trace3 = pm.sample(6000, tune=1000, nuts_kwargs=dict(target_accept=.95))



Hierarchical Model Posterior predic1ve

much wider, includes data areas



Trace Summary

                mean        sd          mc_error    hpd_2.5     hpd_97.5    n_eff   Rhat

      betap     0.258089    0.082296    0.001338    0.096656    0.424239    4166.0  0.999973
      alpha     3.446465    0.120746    0.002027    3.199103    3.687472    3653.0  0.999921
alphasoc__0    -0.209619    0.247940    0.003688   -0.718741    0.259506    4968.0  1.000043
alphasoc__1     0.038430    0.219664    0.002941   -0.404914    0.487200    5961.0  0.999917
alphasoc__2    -0.050901    0.195434    0.002468   -0.447657    0.339753    5818.0  0.999921
alphasoc__3     0.324157    0.189557    0.002763   -0.031798    0.699002    4321.0  0.999929
alphasoc__4     0.039406    0.175986    0.002227   -0.301135    0.401451    6167.0  1.000062
alphasoc__5    -0.320429    0.208348    0.003087   -0.733230    0.055638    4967.0  0.999927
alphasoc__6     0.144230    0.172236    0.002496   -0.168542    0.513625    5458.0  0.999972
alphasoc__7    -0.174227    0.184070    0.002252   -0.568739    0.162993    6696.0  0.999919
alphasoc__8     0.273610    0.174185    0.002854   -0.050347    0.627762    4248.0  1.000032
alphasoc__9    -0.088533    0.291865    0.004870   -0.679972    0.487844    4385.0  0.999929
   sigmasoc     0.312019    0.129527    0.002224    0.098244    0.588338    2907.0  0.999981



Model Correla*ons

What if we model the correla0on between socie0es based on the 
distance between them?

How?

Replace independent intercepts by correlated ones.

Draw from a Mul,variate Normal with a modeled covariance 
matrix.



We can model society specific intercepts 
for oceanic tools as draws from a 0 mean 
MVN.

with pm.Model() as mgc:
    betap = pm.Normal("betap", 0, 1)
    alpha = pm.Normal("alpha", 0, 10)
    etasq = pm.HalfCauchy("etasq", 1)
    rhosq = pm.HalfCauchy("rhosq", 1)
    means=tt.stack([0.0]*10)
    sigma_matrix = tt.nlinalg.diag([0.01]*10)
    cov=tt.exp(-rhosq*dij*dij)*etasq + sigma_matrix
    gammasoc = pm.MvNormal("gammasoc", means, 
        cov=cov, shape=df.shape[0])
    loglam = alpha + gammasoc + betap*df.logpop_c 
    y = pm.Poisson("ntools", mu=t.exp(loglam), 
        observed=df.total_tools)
    mgctrace = pm.sample(10000, tune=2000, 
        nuts_kwargs=dict(target_accept=.95))



Trace Summary

                mean        sd          mc_error    hpd_2.5     hpd_97.5    n_eff   Rhat

      betap     0.247414    0.116188    0.001554     0.005191   0.474834    5471.0  1.000157
      alpha     3.512649    0.357406    0.007140     2.790415   4.239959    2111.0  1.001964
gammasoc__0    -0.269862    0.455632    0.008620    -1.239333   0.607492    2569.0  1.001484
gammasoc__1    -0.117755    0.445192    0.008520    -1.041095   0.757448    2439.0  1.001758
gammasoc__2    -0.165474    0.430544    0.008116    -1.042846   0.686170    2406.0  1.001881
gammasoc__3     0.299581    0.387140    0.007481    -0.481745   1.079855    2365.0  1.001936
gammasoc__4     0.026350    0.382587    0.007425    -0.763338   0.770842    2292.0  1.001728
gammasoc__5    -0.458827    0.389807    0.006976    -1.286453   0.231992    2481.0  1.001517
gammasoc__6     0.097538    0.377499    0.007064    -0.653992   0.840048    2382.0  1.001464
gammasoc__7    -0.263660    0.378417    0.006917    -1.077743   0.404521    2407.0  1.001890
gammasoc__8     0.233544    0.361616    0.006715    -0.510818   0.909164    2407.0  1.001721
gammasoc__9    -0.123068    0.473731    0.006671    -1.034810   0.850175    3985.0  1.000439
      etasq     0.354953    0.660893    0.009717     0.001437   1.114851    4904.0  1.000206
      rhosq     2.306880    30.113269   0.343453     0.000437   4.550517    8112.0  0.999955



Covariance posteriors:



Median Inter-Society Correla2on



Lets INVERT the
idea and start with the
COVARIANCE



MVN Primer

JOINT: 

MARGINAL: 

CONDITIONAL: 



The marginal for any sub-block is independent of the rest of the 
matrix in the MVN!



Modeling co-variance via correla/on

General expecta,on of con,nuity as you move from one adjacent 
point to another. In the absence of significant noise, two adjacent 
points ought to have fairly similar  values.

 is correla*on length,  amplitude.



#Correlation Kernel
def exp_kernel(x1,x2, params):
    amplitude=params[0]
    scale=params[1]
    return amplitude * amplitude*np.exp(-((x1-x2)**2) / (2.0*scale))

#Covariance Matrix
covariance = lambda kernel, x1, x2, params: \
    np.array([[kernel(xi1, xi2, params) for xi1 in x1] for xi2 in x2])

Each curve in plots is generated as:
a = 1.0
nsamps = 50
xx = np.linspace(0,20,nsamps)

#Create Covariance Matrix
sigma = covariance(exp_kernel,xx,xx, [a,ell]) + np.eye(nsamps)*1e-06

#Draw samples from a 0-mean gaussian with cov=sigma
samples = np.random.multivariate_normal(np.zeros(nsamps), sigma)

The greater the correla,on length, the 
smoother the curve.



What did we just do?

• we have not seen any data yet

• but we expect the func4on represen4ng our data to have some 
level of con4nuity

• thus we considered different PRIOR func4ons that might 
represent our data

• as having come from MVNs with a covariance matrix based on 
the correla4on length we think we have



Now we see some data

The red curve represents one of these 
"prior" func2ons from the calcula2on 
above.

We have 3 red data points, so it would be 
seem to be a prior curves consistent with 
this data.

Consider the 3 red data points to have been 
generated IID from some regression 
func8on  (like ) with some 
univariate gaussian noise  at each point, 
that is a gaussian likelihood.



Basic Idea
• The regression curve is one of the prior curves

• it must be consistent with the data.

• Consider the curve as a point in a mul:-dimensional space, a draw 
from a mul+variate gaussian with as many points as points on the 
curve.

The regression curve  and the data  are assumed to be from a joint 
mul6variate gaussian with the same form (kernel) of covariance matrix





JOINT:

MARGINAL:

CONDITIONAL:

where: 



.
#"test" data
x_star = np.linspace(0,20,nsamps) #50 grid points

# defining the training data
x = np.array([5.0, 10.0, 15.0]) # shape 3
f = np.array([1.0, -1.0, -2.0]).reshape(-1,1)

K = covariance(exp_kernel, x,x,[a,ell])
#shape 3,3

K_star = covariance(exp_kernel,x,x_star,[a,ell])
#shape 50, 3

K_star_star = covariance(exp_kernel, x_star, x_star, [a,ell])
#shape 50,50

K_inv = np.linalg.inv(K)
#shape 3,3

mu_star = np.dot(np.dot(K_star, K_inv),f)
#shape 50

sigma_star = K_star_star  - np.dot(np.dot(K_star, K_inv),K_star.T)
#shape 50, 50

for i in range(10):
    samples = np.random.multivariate_normal(mu_star.flatten(), sigma_star)
    plt.plot(x_star, samples)



Predic've 1

• we are le( with a smaller infinity of 
prior func6ons consistent with the data

• these are our possible regression 
func6ons

• here we show the area these regression 
func6ons cover

plt.plot(x_star, mu_star, '.')
plt.errorbar(x_star, mu_star, 
    yerr=1.96*np.sqrt(sigma_star.diagonal()), alpha=0.3);



2 main concepts:
condi&onal equals predic&ve
marginal block is independent



Condi&onal
EQUALS Predic.ve



Predic've 2: add noise for 

Now let’s add some noise to our scenario. 

We assume , 

sigma_epsilon_sq = 0.05

K_noise = K + np.diag([sigma_epsilon_sq] * K.shape[0])
K_noise_inv = np.linalg.inv(K_noise)

mu_star_noise = np.dot(np.dot(K_star, K_noise_inv),f)

sigma_star_noise = K_star_star  - 
    np.dot(np.dot(K_star, K_noise_inv),K_star.T)

plt.plot(x_star, mu_star_noise, '.')
plt.errorbar(x_star, mu_star_noise, 
    yerr=1.96*np.sqrt(sigma_star_noise.diagonal()), alpha=0.3);



So far

1. We built a covariance matrix from a kernel func5on

2. Use the covariance matrix to generate a "curve" as a point in a mul5-dimensional space from a MVN

3. mul5ple such curves serve as prior fits for our data

4. now we bring in the data and condi5on on it (with noise added if needed) using normal distribu5on 
formulae

5. the condi5onal has the form of a predic5ve and we are done

6. Also no5ce that the marginal only has quan55es from the predic5ve block. This means that we dont 
care about the size of the original block in calcula5ng the marginal.

These observa+ons are the building blocks of the GP.



KEY CONCEPT 2:

MARGINAL IS DECOUPLED
...for the marginal of a gaussian, only the covariance of the block of the 
matrix involving the unmarginalized dimensions ma:ers! Thus "if you 

ask only for the proper?es of the func?on (you are fiBng to the data) at 
a finite number of points, then inference in the Gaussian process will 

give you the same answer if you ignore the infinitely many other points, 
as if you would have taken them all into account!"

-Rasmunnsen



Use infinite gaussians!

• think of the func-on as an infinite 
vector.

• Draw  from some 'infinite' gaussian 
distribu5on with some mean and some 
kernel.

This then is the Gaussian Process, 
which we use to set a prior on the 
space of func5ons.



Back to our formulae...

JOINT:

MARGINAL:

where: 



Defini&on of Gaussian Process

Assume we have this func0on vector
. If, for ANY choice of input points, , the marginal distribu0on over :

is mul'-variate Gaussian, then the distribu'on  over the func'on  is said to be a Gaussian Process.

We write a Gaussian Process thus:

where the mean and covariance func1ons can be thought of as the infinite dimensional mean vector and covariance matrix respec1vely.



a Gaussian Process defines a prior distribu2on over func2ons!

Once we have seen some data, this prior can be converted to a 
posterior over func6ons, thus restric6ng the set of func6ons that 
we can use based on the data.

So: consider every possible func3on and associate a prior 
probability with this func3on. e.g. assign smoother func3ons higher 
prior probability. But how are we possibly going to calculate over 
an uncountably infinite set of func3ons in finite 3me?



Size of the other block DOES NOT MATTER

Since the size of the "other" block of the matrix does not ma6er, 
we can do inference from a finite set of points.

Any  observa,ons in an arbitrary data set,  
can always be represented as a single point sampled from some -
variate Gaussian distribu,on. Thus, we can work backwards to 
'partner' a GP with a data set, by marginalizing over the infinitely-
many variables that we are not interested in, or have not observed.

ftp://ftp.tuebingen.mpg.de/pub/ebio/chrisd/GPtutorial.pdf


GP regression

Using a Gaussian process as a prior for our model, and a Gaussian as our 
data likelihood, then we can construct a Gaussian process posterior.

Likelihood:  where the infinite  takes the place 
of the parameters.

Prior: 

Infinite normal posterior process:  
(Kinda like a conjugate prior!)



GP regression posterior

The posterior distribu.on for f is:

Posterior predic,ve distribu,on for  for a test vector input , given a training set X with values y for the 
GP is:

The predic*ve distribu*on of test targets y∗ : add  to .



What did we do

• usually in a parametric model we had some  (small) number of 
parameters

• but here our covariance func9ons are NxN !

• no free lunch: calcula9on involves inver9ng a NxN matrix as in 
the kernel space representa9on of regression.

• cannot thus handle large data if no approxima9ons are used



How do we represent priors?

KERNELS for covariance matrices!

Can compose kernels.

Examples: exponen-al, cosine, matern, etc

Then the infinite func,ons are again parametrized by finite number 
of kernel parameters.



Covariance Kernels (row1: exp, m32 row2: m52, cos)



Se#ng up the model

with pm.Model() as model:
    # priors on the covariance function hyperparameters
    l = pm.Uniform('l', 0, 10)
    # uninformative prior on the function variance
    s2_f = pm.HalfCauchy('s2_f', beta=10)
    # uninformative prior on the noise variance
    s2_n = pm.HalfCauchy('s2_n', beta=5)
    # covariance functions for the function f and the noise
    f_cov = s2_f**2 * pm.gp.cov.ExpQuad(1, l)
    mgp = pm.gp.Marginal(cov_func=f_cov)
    y_obs = mgp.marginal_likelihood('y_obs',  
        X=xtrain.reshape(-1,1), y=ytrain, noise=s2_n,
        is_observed=True)



How do we sample? Use the Marginal!

Posterior-predic,ve distribu,on, as a func,on of hyper parameters 
:

A likelihood with parameters  and simply use maximum-likelihood 
with respect to  to es7mate these  using our "data" 



INFERENCE

Want the marginal likelihood: 

The Marginal likelihood given a GP prior and a gaussian likelihood is 
just the marginal for a finite MVN!



MAP-2 Fi)ng in pymc3

with model:
    marginal_post = pm.find_MAP()

{'l': array(1.438132008790354),
 'l_interval__': array(-1.7839733342616466),
 's2_f': array(2.047500439200898),
 's2_n': array(0.3465300514941838)}



How do we predict? Use the condi1onal!

• we used the marginal (which was the marginal likelihood) as the 
likelihood in our model

• ul6mately we want to predict

• once we have traces for the kernel parameters, we need to use 
each tracepoint

• to draw a sample from the condi6onal

• thats it!



MCMC

with model:
     trace = pm.sample(10000, tune=2000,
        nuts_kwargs={'target_accept':0.85})
 with model:
     fpred = mgp.conditional("fpred",
        Xnew = x_pred.reshape(-1,1),
        pred_noise=False)
     ypred = mgp.conditional("ypred",
        Xnew = x_pred.reshape(-1,1),
        pred_noise=True)
     gp_samples = pm.sample_ppc(trace,
         vars=[fpred, ypred],
         samples=200)



Posterior (predic-ve) curves



Where are GPs used?

• geosta(s(cs with kriging, oil explora(on

• spa(al sta(s(cs

• as an interpolator (0 noise case) in weather simula(ons

• they are equivalent to many machine learning models such as kernelized regression, SVM and neural 
networks (some)

• ecology since model uncertainty is high

• they are the start of non-parametric regression

• (me series analysis (see cover of BDA)

• because of the composability of kernels, in automates sta(s(cal analysis (see the automa(c sta(s(cian)


