
Lecture 20

Model Specifica-on and glms



REMEMBER LECTURE 9 BAYESIAN 
REGRESSION



Bayesian Formula/on of 
Regression

Data 

All data points are combined into a  
matrix .

Model:



Likelihood

The likelihood is, because we assume independency, the product

Now, suppose we have prior: 



Then, Posterior:

Inverse covariance 

where the new mean is 



Posterior Predic+ve



Howell's data

• These are census data for the Dobe area !Kung San people

• Nancy Howell conducted detailed quan>ta>ve studies of this Kalahari foraging 
popula>on in the 1960s.



Regression against predictor, 
weight



Priors



Posteriors



DO IT BY SAMPLING



Regression, adding a predictor, 
weight

with pm.Model() as hm2:
    intercept = pm.Normal('intercept', mu=150, sd=100)
    slope = pm.Normal('slope', mu=0, sd=10)
    sigma = pm.Uniform('sigma', lower=0, upper=50)
    # below is a deterministic
    mu = intercept + slope * df2.weight
    height = pm.Normal('height', mu=mu, sd=sigma, observed=df2.height)
    stepper=pm.Metropolis()
    tracehm2 = pm.sample(10000, step=stepper)



Traces are awful

The slope and intercept are very highly correlated: -0.99!



Regression traces

• symptom of shared informa1on and iden1fiability

• fix by centering. intercept then gives response when 
predictor=mean.

with pm.Model() as hm2c:
    intercept = pm.Normal('intercept', mu=150, sd=100)
    slope = pm.Normal('slope', mu=0, sd=10)
    sigma = pm.Uniform('sigma', lower=0, upper=50)
    mu = pm.Deterministic('mu', intercept + slope * (df2.weight -df2.weight.mean()))
    height = pm.Normal('height', mu=mu, sd=sigma, observed=df2.height)
    stepper=pm.Metropolis()
    tracehm2c = pm.sample(10000, step=stepper)





Posteriors

meanweight = df2.weight.mean()
weightgrid = np.arange(25, 71)
mu_pred = np.zeros((len(weightgrid), len(tr2c)))
for i, w in enumerate(weightgrid):
    mu_pred[i] = tr2c['intercept'] + tr2c['slope'] * (w - meanweight)

mu_mean = mu_pred.mean(axis=1)
mu_hpd = pm.hpd(mu_pred.T)



Posteriors on a grid

Why so 'ght?



Posterior predic,ve

At data:

postpred = pm.sample_ppc(tr2c, 1000, hm2c)
100%|██████████| 1000/1000 [00:19<00:00, 57.56it/s]    | 1/1000 [00:00<08:17,  2.01it/s]

On a full grid:

n_ppredsamps=1000
weightgrid = np.arange(25, 71)
meanweight = df2.weight.mean()
ppc_samples=np.zeros((len(weightgrid), n_ppredsamps))

for j in range(n_ppredsamps):
    k=np.random.randint(len(tr2c))#samples with replacement
    musamps = tr2c['intercept'][k] + tr2c['slope'][k] * (weightgrid - meanweight)
    sigmasamp = tr2c['sigma'][k]
    ppc_samples[:,j] = np.random.normal(musamps, sigmasamp)



Predic'ves at data and on grid



glms: MAXENT and LINK

• MAXENT: use all the informa7on we have about the constraints 
on an outcome variable to choose a likelihood, typically in the 
exponen7al family, that is a maxent distribu7on.

• LINK:  where  is the parameter at the ith data 
point.

•  common links we use are the logit link and the log link.



MAXENT

• gaussian likelihood for linear regression maxent choice

• poor choice for constraints such as the outcome being counts, or 
being only posi9ve.

• use all the informa9on we have about the constraints on an 
outcome variable to choose a likelihood, typically in the 
exponen9al family, that is a maxent distribu9on.



LINK

 where  is the parameter at the ith data point.

Bioassay:  is the logit, and the parameter  is the probability in 
the ith experiment, so that we have

And where the likelihood used is .



Poisson GLM

 is rate,  is counts,  is exposure.

 or  constrained to be posi.ve.

For most GLMs, the common links we use are the logit link, already used by you in 
the bioassay Binomial GLM to model the space of probabili<es, and the log link 
which you will use here to enforce posi<veness on a parameter in poisson regression.



Oceanic Tools

From Mcelreath:

The island socie-es of Oceania provide a natural 
experiment in technological evolu-on. Different 

historical island popula-ons possessed tool kits of 
different size. These kits include fish hooks, axes, boats, 
hand plows, and many other types of tools. A number 

of theories predict that larger popula-ons will both 
develop and sustain more complex tool kits. So the 

natural varia-on in popula-on size induced by natural 
varia-on in island size in Oceania provides a natural 

experiment to test these ideas. It's also suggested that 
contact rates among popula-ons effec-vely increase 

popula-on size, as it's relevant to technological 
evolu-on. So varia-on in contact rates among Oceanic 

socie-es is also relevant. (McElreath 313)



Model M1

with pm.Model() as m1:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop +
        betac*df.clevel + betapc*df.clevel*df.logpop
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

with m1:
    trace=pm.sample(10000, njobs=2)
Average ELBO = -55.784:
100%|██████████| 200000/200000 [00:15<00:00, 13019.16it/s]   12683.03it/s]
100%|██████████| 10000/10000 [01:59<00:00, 83.80it/s]



Posteriors for M1

• traces and autocorrela.ons look good

• The posterior for  .ghtly constrained, 
and as expected from theory, shows a 
posi.ve effect.

• The posteriors for  and  both 
overlap 0 substan.ally, and seem 
compara.vely poorly constrained.

• no substan.al effect of contact rate, 
directly or through the interac.on?



You would be wrong: 
counterfactual predic4ons

 traces for high-contact and low contact, 
log(popula6on) of 8.

lamlow = lambda logpop: trace['alpha']+trace['betap']*logpop
lamhigh = lambda logpop: trace['alpha']+(trace['betap'] +
    trace['betapc'])*logpop + trace['betac']
sns.distplot(lamhigh(8) - lamlow(8));

A new kind of model checking.



What happened?

• very strong nega-ve correla-ons 
between  and 

• very strong nega-ve correla-ons 
between  and .

• The la6er is the cause for the 0-
overlaps.

• When  is high,  must be low, and 
vice-versa. Look at the joint uncertainty 
of the correlated variables rather than 
just marginals



Fix by centering

• you would have seen the problem in :

{'alpha': 8110.0, 'betac': 4600.0, 'betap': 8016.0, 'betapc': 4597.0}

with pm.Model() as m1c:
    betap = pm.Normal("betap", 0, 1)
    betac = pm.Normal("betac", 0, 1)
    betapc = pm.Normal("betapc", 0, 1)
    alpha = pm.Normal("alpha", 0, 100)
    loglam = alpha + betap*df.logpop_c + betac*df.clevel + betapc*df.clevel*df.logpop_c
    y = pm.Poisson("ntools", mu=t.exp(loglam), observed=df.total_tools)

{'alpha': 7978.0, 'betac': 7898.0, 'betap': 13621.0, 'betapc': 17703.0}



• be$er constrained, less correlated, sampling faster and 
be$er

• clear effect of contact, effect of interac6on not clear yet

• will use model comparison next 6me for this!



Hierarchicals with NUTS



Normal-Normal Hierarchical Model

 independent experiments, experiment  es-ma-ng the 
parameter  from  independent normally distributed data points, 

, each with known error variance ; that is,

Gelman 8-schools problem: es2mated coaching effects  to 
improve SAT scores for school , with sampling variances, .



Sample mean of each group  

 with sampling variance 

.

Likelihood for  using suff-stats, :

Nota%on flexible in allowing a separate 
variance  for the mean of each group . 
Appropriate when the variances differ for 
reasons other than number of data pts.



Centered Hierarchical Model

with pm.Model() as schools1:

    mu = pm.Normal('mu', 0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)

with schools1:
    trace1 = pm.sample(5000, init=None, njobs=2, tune=500)



Small :

{'mu': 101.0,
  'tau': 273.0,
  'tau_log_': 77.0,
  'theta': array([ 169.,  199.,  236.,  193.,  211.,  231.,  139.,  204.])})

• s#ckys are actually trying to drive down 
value of trace

• we are in a region of high curvature



High Curvature Issues



High Curvature Issues

• symplec)c integra)on diverges: good 
diagnos)c. False posi)ves from 
heuris)c.

• sampler needs to have real small steps 
to not diverge, but then becomes s)cky

• regions of high curvature o=en have 
high energy differences, causing trouble 
for microcanonical jump transi)ons.



Hierarchical Models have high 
curvature

• characteris*c funnel, also there in MH and gibbs

• reflects high correla*on between levels in tree

• divergences occur in neck



Step size effect

• lower step size  be.er for symplec3c integrators, especially in 
high curvature regions

• this allows for geometric ergodicity: we go everywhere.

• too small : return of the random walk.



Changing step size

with schools1:
    step = pm.NUTS(target_accept=.85)
    trace1_85 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

85: Acceptance 0.804601458758 Step Size 0.203087336483 Divergence 39
90: Acceptance 0.873340820433 Step Size 0.159223726996 Divergence 18
95: Acceptance 0.923346597897 Step Size 0.126824682121 Divergence 9
99: Acceptance 0.990173791609 Step Size 0.0164237997757 Divergence 5

__

divergences persist. Too curved!



Non-centered model

• could change kine/c energy (riemannian HMC) to make mass matrix dependent upon posi/on

• simpler: reparametrize to reduce levels in hierarchy



Factor dependency of  on  into a 
determinis1c transforma1on between the 
layers, leaving the ac1vely sampled 
variables uncorrelated.

with pm.Model() as schools2:
    mu = pm.Normal('mu', mu=0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    nu = pm.Normal('nu', mu=0, sd=1, shape=J)
    theta = pm.Deterministic('theta', mu + tau * nu)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)
    trace2 = pm.sample(5000, init=None, njobs=2, tune=500)



:

{'mu': 10000.0,
  'nu': array([ 10000.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
          10000.]),
  'tau': 6880.0,
  'tau_log_': 5193.0,
  'theta': array([  9624.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
           9829.])}

divergent = trace2['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace2)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 8
Percentage of Divergent 0.00160



Divergences and true length of funnel



• Divergences infrequent, and all over. 
Mostly false posi9ves.

• Lowering step sizes should make them 
go away

with schools2:
    step = pm.NUTS(target_accept=.95)
    trace2_95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

• lower curvature ensures geometric 
ergodicity deep in our funnel

• see Betancourt for big discussion

http://mc-stan.org/documentation/case-studies/divergences_and_bias.html


Momentum resampling 
Efficiency

• match transi,on  to marginal 

def resample_plot(t):
    sns.distplot(t['energy']-t['energy'].mean(), label="P(E)")
    sns.distplot(np.diff(t['energy']), label = "p(E | q)")
    plt.legend();
    plt.xlabel("E - <E>")

• if marginal has bigger tails we are in 
trouble

• indica5ve here of big energy changes in 
high-curvature regions not possible to 
boost to.



centered, small step size vs Non-centered

On le&, centered, your sampler is not exploring, so make sure what you are diagnosing. On right, nice match!



What Priors?
• see h&ps://github.com/stan-dev/stan/wiki/Prior-Choice-

Recommenda>ons

• basic idea: choose something reasonable, and then spread it out 
some



Uninforma)ve priors on loca)on



• used transform  and then . Shape 

comes in through jacobian.

• despite transforma7on change, flat priors s7ll used for loca7on 
priors

• may even be improper, ie integrate to  as long as posterior 
integral is finite

• e.g. flat prior on mean in normal-normal model with strong 
likelihood.



Jeffreys prior

noninforma(ve prior on scale variables 

where

is the Fisher Informa/on, and expecta/on is with respect to the 
likelihood.



Weakly informa.ve or regularizing priors

• these are the priors we will concern ourselves most with

• restrict parameter ranges

• help samplers

• regularizing priors may use the data "twice": hierarchical models. 
But guard against overfi<ng is being up in the hierarchy



Normal model Example

• two data points 1 and -1

• flat improper priors on 

• model dri3s wildly as less data

• flat priors say extreme implausible 
values quite likely

• extreme dri3s overwhelm chain



weakly regularizing priors

• choose 

• choose 

• lets mean vary widely but not crazily

• HalfCauchy lets variance be posi:ve 
and occasionally can have high value 
samples





Other priors

• KL Maximiza+on non-informa+ve prior by Bernardo

• Maximum Entropy prior when some assump+ons but no more..

• Empirical bayes prior: uses data! in hierarchical models

• hyperparameter prior in hierarchcal models does not, we simply 
fit the whole model



Data overwhelms prior



S"ll:

• in the Bayesian Method we wish the prior to be weakly informa7ve

• weakly means we ARE communica7ng some info to the prior from the 
data

• its mainly to ensure sensible values and help the sampler along

• and it provides some regulafriza7on in low data situa7ons due to the 
graphical structure of our model

• we should do prior sensi7vity and range analysis in our bayesian workflow



Levels of Bayes


