AM207 Lecture 2 https://am207.info/

AM207 Class Infrastructure

- Website am207.info
- Join [Piazza](https://piazza.com/class/jlo4e4ari3r4wd)
- Join [Slack](https://join.slack.com/t/am207-2018fallclass/shared_invite/enQtNDMwOTE5ODk1MzM0LTg4M2U2NDcxOTJiZTliMzY0YmExZGIxNTM3MTA5OGU5MmIwZGZlZmU0MDI1OWM0ODVkODA1ZGM2NGFmM2EzZWQ)
- We may add Twitter if we're feeling adventurous so stay posted

AM207 Slack

- Please use for asking questions during lecture and lab (if you're not present to raise your hand and ask)
- The channel for the current lecture is #lecture
- The channel for the current lab is #lab
- We'll rename after class/lab to #lectureN and #labM
- Don't abuse (we'll announce any other future appropriate uses on Piazza)

Advice from your TFs

- **Collaboration** -- if you collaborate for assignments (HW and Paper/ Tutorial) for which we allow students to work together PLEASE PLEASE SUBMIT ONE ASSIGNMENT.
- Contacting Teaching Staff^{*} -- We pride ourselves on being available. Please come to OH (the class will be a lot easier if you do so).
- You can also email us at am207 info. Right now we have aliases for grading (grading@) and info (info@) .

Random Variables

Definition. A random variable is a mapping

 $X:\Omega\to\mathbb{R}$

that assigns a real number $X(\omega)$ to each outcome ω .

- $-\Omega$ is the sample space. Points
- $-\omega$ in Ω are called sample outcomes, realizations, or elements.
- $-$ Subsets of Ω are called Events.

Fundamental rules of probability:

1. $p(X) >= 0$; probability must be non-negative

$2.0 \le p(X) \le 1$

3. $p(X) + p(X^{-}) = 1$ either happen or not happen.

$$
4. \ p(X+Y) = p(X) + p(Y) - p(X,Y)
$$

- Say $\omega = HHTTTTTTT$ then $X(\omega) = 3$ if defined as number of heads in the sequence ω .
- We will assign a real number P(A) to every event A, called the probability of A.
- We also call P a probability distribution or a probability measure.

Probability as frequency

A Murder Mystery

(from the book: Model Based Machine Learning)

- Mr Black is dead
- We represent the murderer with a random variable murderer whose value we dont know. This variable equals either Auburn or Grey.
- $p(murderer = Auburn) = 0.7$
- The "prior" distribution for murder is the Bernoulli: $murderer \sim Bernoulli(0.7)$

Evidence and conditional probability

- an ornate ceremonial dagger and an old army revolver are found. We thus introduce a new random variable weapon, in addition to the existing random variable murderer.
- $p(weapon = revolver \mid murderer = grey) = 0.9$ $p(weapon = revolver \mid murderer = auburn) = 0.2$

The joint Probability distribution

A probabilistic model is:

- A set of random variables,
- A joint probability distribution over these variables (i.e. a distribution that assigns a probability to every configuration of these variables such that the probabilities add up to 1 over all possible configurations).

Now we condition on some random variables and learn the values of others.

(paraphrased from Model Based Machine Learning)

Rules

1. $P(A, B) = P(A | B)P(B)$ 2. $P(A) = \sum_{P} P(A, B) = \sum_{P} P(A | B)P(B)$

 $P(A)$ is called the marginal distribution of A, obtained by summing or marginalizing over B .

Conditional Rule

Marginal Rule

Observation and Inference

• Dr Bayes spots a bullet lodged in the book case.

The process of computing revised probability distributions after we *have observed the values of some the random variables, is called inference.*

• a principled way from prior to posterior

Bayes Theorem: Inference without computing the joint distribution

Why? The joint can be computationally hard. Sometimes there are two many "factors"

$$
p(y \mid x) = \frac{p(x \mid y) \, p(y)}{p(x)} = \frac{p(x \mid y) \, p(y)}{\sum_{y'} p(x,y')} = \frac{}{\sum}
$$

$\frac{p(x \mid y) \, p(y)}{\sum_{y'} \, p(x \mid y') p(y')}$

$$
P(murderer|weapon) = \frac{P(weapon|murderer)P}{P(weapon)}
$$

$$
P(weapon) = \sum_{murderer} P(weapon|murderer)P(n)
$$

$$
posterior = \frac{likelihood \times prior}{evidence}
$$

The evidence is just a normalizer and can often be ignored.

The likelihood function is NOT a probability distribution over weapon (which is known!). It is a function of the random variable murderer.

 $P(murderer)$

 $murderer)$

 \bullet

Just ignore the fact that we are in a square!

Lets get precise

Cumulative distribution Function

The cumulative distribution function, or the CDF, is a function

$$
F_X:\mathbb{R}\to[0,1],
$$

defined by

$$
F_X(x)=p(X\leq x).
$$

Sometimes also just called *distribution*.

Let X be the random variable representing the number of heads in two coin tosses. Then $x = 0$, 1 or 2.

CDF:

x

Probability Mass Function

\overline{X} is called a **discrete random variable** if it takes countably many values $\{x_1, x_2, \ldots\}$.

We define the **probability function** or the **probability mass** function (pmf) for X by:

$$
f_X(x)=p(X=x)\\
$$

The pmf for the number of heads in two coin tosses:

 \pmb{x}

Probability Density function (pdf)

A random variable is called a **continuous random variable** if there exists a function f_X such that $f_X(x) \geq 0$ for all x, $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and for every a \leq b, $p(a < X < b) = \int_{a}^{b} f_X(x) dx$

Note: $p(X = x) = 0$ for every x. Confusing!

CDF for continuous random variables

$$
F_X(x)=\int_{-\infty}^x f_X(t)dt
$$

and
$$
f_X(x) = \frac{dF_X(x)}{dx}
$$
 at all points x at which F_X is
Continuous pdfs can be > 1. cdfs bounded in [0,1].

M 207

is differentiable.

A continuous example: the Uniform(0,1) Distribution

pdf:

$$
f_X(x)=\left\{\begin{matrix} 1 & \text{for } 0\leq x\leq 1\\ 0 & \text{otherwise.} \end{matrix}\right.
$$

cdf:

$$
F_X(x) = \begin{cases} 0 & x \leq 0 \\ x & 0 \leq x \leq 1 \\ 1 & x > 1. \end{cases}
$$

cdf:

 \mathbb{c}_i y_j r_j n_{ij} $x_i\,$

$$
p(X=x_i)=\sum_j p(X=x_i, Y=y_j)
$$

$$
p(Y=y_j\mid X=x_i)\times p(X=x_i)=p(X=x_i,Y=y_j).
$$

More generally for hidden variables z :

$$
p(x)=\sum_z p(x,z)=\sum_z p(x|z)p(z)
$$

Marginals and Conditionals

Marginals

Marginal mass functions are defined in analog to probabilities:

$$
f_X(x)=p(X=x)=\sum_y f(x,y);\,\, f_Y(y)=p(Y=
$$

Marginal densities are defined using integrals:

$$
f_X(x)=\int dy f(x,y);\,\,f_Y(y)=\int dx\,
$$

$(y) = \sum f(x, y).$

 $f(x,y).$

Conditionals

Conditional mass function is a conditional probability:

$$
f_{X|Y}(x \mid y)=p(X=x \mid Y=y)=\frac{p(X=x,Y=y)}{p(Y=y)}
$$

The same formula holds for densities with some additional requirements $f_Y(y) > 0$ and interpretation:

$$
p(X\in A\mid Y=y)=\int_{x\in A}f_{X|Y}(x,y)\epsilon
$$

$\frac{y}{f_{\rm V}(y)} = \frac{f_{XY}(x,y)}{f_{\rm V}(y)}$

 $dx.$

Bernoulli pmf:

$$
f(x)=\begin{cases} 1-p & x=0\\ p & x=1. \end{cases}
$$

for p in the range 0 to 1.

$$
f(x)=p^x(1-p)^{1-x}\,
$$

for x in the set $\{0,1\}$.

What is the cdf?

The big Ideas create and simulate a data story perform inference using data story

Data story

- a story of how the data came to be.
- may be a causal story, or a descriptive one (correlational, associative).
- The story must be sufficient to specify an algorithm to simulate new data*.
- a formal **probability model**.

tossing a globe in the air experiment

- toss and catch it. When you catch it, see whats under index finger
- mark W for water, L for land.
- figure how much of the earth is covered in water
- thus the "data" is the fraction of W tosses

Probabilistic Model

- 1. The true proportion of water is p .
- 2. Bernoulli probability for each globe toss, where p is thus the probability that you get a W. This assumption is one of being **Identically Distributed.**
- 3. Each globe toss is **Independent** of the other.

Assumptions 2 and 3 taken together are called IID, or Independent and Identially Distributed Data.

Expectations, LLN, Monte Carlo, and the CLT

- Expectations and some notation
- The Law of large numbers
- Simulation and Monte Carlo for Integration
- Sampling and the CLT
- Errors in Monte Carlo

Expectation $E_f[X]$

Why calculate it?

- we'll see it corresponds to the frequentist notion of probability
- we often want point estimates

Expectations are always with respect to a pmf or density. Often just called the **mean** of the mass function or density. More weight to more probable values.

For the discrete random variable X :

$$
E_f[X]=\sum_x x\,f(x).
$$

Continuous case:

$$
E_f[X]=\int x\,f(x)dx=\int x dF(x)
$$

 $x),$

Notation

The expected value, or mean, or first moment, of X is defined to be

$$
E_fX=\int x dF(x)=\begin{cases} \sum_x x f(x) & \text{if X is} \\ \int x f(x) dx & \text{if X is} \end{cases}
$$

The discrete sum can be said to be an integral with respect to a counting measure.

discrete continuous

assuming that the sum (or integral) is well defined.

LOTUS: Law of the unconscious statistician

Also known as The rule of the lazy statistician.

Theorem:

if $Y=r(X),$

 $E[Y]=\int r(x)dF(x)$

Application: Probability as Expectation

Let A be an event and let $r(x) = I_A(x)$ (Indicator for event A)

Then:

$$
E_f[I_A(X)]=\int I_A(x)dF(x)=\int_A f_X(x)dx=p(.
$$

 $X\in A)$

Ever longer sequences for means

Law of Large numbers

Let x_1, x_2, \ldots, x_n be a sequence of IID values from random variable X , which has finite mean μ . Let:

Then:

$$
S_n\to \mu\,as\,n\to\infty.
$$

Frequentist Interpretation of probability

$$
E_{F}[I_{A}(X)]=p(X\in A)
$$

Suppose $Z = I_A(X) \sim Bernoulli(p = P(A)).$

Now if we take a long sequence $seq=10010011100...$ from Z , then

 $P(A)$ =mean(seq) as length(seq) $\rightarrow \infty$

Monte Carlo Algorithm

- use randomness to solve what is often a deterministic problem
- application of the law of large numbers
- integrals, expectations, marginalization
- we'll study optimization, integration, and obtaining draws from a probability distribution

...I wondered whether a more practical *method than "abstract thinking" might not be to lay it out say one hundred 0mes and simply observe and count the number of successful plays*

...and more generally how to change processes described by certain differential equations into an *equivalent form interpretable as a* succession of random operations

— Stanislaw Ulam

$$
A=\int_x\int_y I_{\in C}(x
$$

If $f_{X,Y}(x,y) \sim Uniform(V)$:

estimating π

 $(x,y)dxdy=\int\int_{\mathbb{C}C}dxdy.$

 $E_f[I_{\in C}(X,Y)] = \int I_{\in C}(X,Y) dF(X,Y)$ $\begin{aligned} \mathcal{L}=\int\int_{\mathbb{C} C}f_{X,Y}(x,y)dxdy=p(X,Y\in C) \end{aligned}$

 $\lambda = \frac{1}{V} \int \int_{\epsilon \cap C} dx dy = \frac{A}{V}.$

Formalize Monte Carlo Integration idea

For Uniform pdf: $U_{ab}(x) = 1/V = 1/(b - a)$

$$
J=\int_a^b f(x)U_{ab}(x)\,dx=\int_a^b f(x)\,dx/V=
$$

From LOTUS and the law of large numbers:

$$
I=V\times J=V\times E_U[f]=V\times \lim_{n\to\infty}\frac{1}{N}\sum_{x_i\sim U}
$$

 I/V

 $f(x_i)$

Example

$$
I=\int_2^3\left[x^2+4\,x\,\sin(x)\right]dx.
$$

```
def f(x):
    return x^{**}2 + 4*x^{*}np.sin(x)def intf(x):
    return x^{**}3/3.0+4.0^{*}np.sin(x) - 4.0^{*}x^{*}np.cos(x)
a = 2;b = 3;N= 10000
X = np.random.uniform(low=a, high=b, size=N)
Y = f(X)V = b-a\text{Imc} = V * np \cdot \text{sum}(Y) / N;exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))
```
Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251

Accuracy as a function of the number of samples

Variance of the estimate

M replications of N coin tosses

Samples

sample means: 200 replications of N coin tosses

$$
E_{\{R\}}(N\,\bar{x})=E_{\{R\}}(x_1+x_2\!+\!\dots\!+\!x_N)=E_{\{R\}}(x_1)+E_{\{R\}}
$$

In limit $M\to\infty$ of replications, each of the expectations in RHS can be replaced by the population mean μ using the law of large numbers! Thus:

$$
E_{\{R\}}(N\,\bar{x})=N\,\mu\\ E_{\{R\}}(\bar{x})=\mu
$$

In limit $M\to\infty$ of replications the expectation value of the sample means converges to the population mean.

$\frac{1}{2}(x_2)+\ldots+E_{\{R\}}(x_N)$

Distribution of Sample Means

Now let underlying distribution have well defined mean μ AND a well defined variance σ^2 .

 $V_{\{R\}}(N\,\bar{x})=V_{\{R\}}(x_1+x_2+\ldots+x_N)=V_{\{R\}}(x_1)+V_{\{R\}}(x_2)+\ldots+V_{\{R\}}(x_N)$

Now in limit $M \to \infty$, each of the variances in the RHS can be replaced by the population variance using the law of large numbers! Thus:

$$
V_{\{R\}}(N\,\bar{x})=N\,\sigma^2 \over V(\bar{x})=\frac{\sigma^2}{N}
$$

The Central Limit Theorem (CLT)

Let x_1, x_2, \ldots, x_n be a sequence of IID values from a random variable X. Suppose that X has the finite mean μ AND finite variance σ^2 . Then:

$$
S_n = \frac{1}{n} \sum_{i=1}^n x_i \text{, converges to}
$$

$$
S_n \sim N(\mu, \frac{\sigma^2}{n}) \, as \, n \to \infty.
$$

Meaning

- weight-watchers' study of 1000 people, average weight is 150 \log with σ of 30lbs.
- Randomly choose many samples of 100 people each, the mean weights of those samples would cluster around 150lbs with a standard error of 3lbs.
- a different sample of 100 people with an average weight of 170lbs would be more than 6 standard errors beyond the population mean.

Back to Monte Carlo

We want to calculate:

$$
S_n(f)=\frac{1}{n}\sum_{i=1}^n f(x_i)
$$

- Whatever $V[f(X)]$ is, the variance of the sampling distribution of the mean goes down as $1/n$
- Thus s goes down as $1/\sqrt{n}$

Why is this important?

- In higher dimensions d , the CLT still holds and the error still scales as $\frac{1}{\sqrt{n}}$.
- How does this compete with numerical integration? For $n=N^{1/d} \cdot$
	- left or right rule: $\propto 1/n$, Midpoint rule: $\propto 1/n^2$
	- Trapezoid: $\propto 1/n^2$, Simpson: $\propto 1/n^4$

Basic Numerical Integration idea

(from wikipedia)

Soon

In order to calculate expectations, do integrals, and do statistics, we must learn how to do

A taste: Inverse transform

x

algorithm

The CDF F must be invertible!

- 1. get a uniform sample u from $Unif(0,1)$
- 2. solve for x yielding a new equation $x = F^{-1}(u)$ where F is the CDF of the distribution we desire.

3. repeat.

Example: exponential

pdf:
$$
f(x) = \frac{1}{\lambda} e^{-x/\lambda}
$$
 for $x \ge 0$ and $f(x) = 0$ otherwise.

$$
u=\int_0^x\frac{1}{\lambda}e^{-x'/\lambda}dx'=1-e^{-x/2}
$$

Solving for x

$$
x=-\lambda\ln(1-u)
$$

code

Hit or miss

- Generate samples from a uniform distribution with support on the rectangle
- See how many fall below $y(x)$ at a specific x sliver.

This is the basic idea behind rejection sampling

