
AM207 Lecture 2
h"ps://am207.info/

https://am207.info/


AM207 Class Infrastructure

• Website am207.info

• Join Piazza

• Join Slack

• We may add Twi=er if we're feeling adventurous so stay posted

https://am207.info
https://piazza.com/class/jlo4e4ari3r4wd
https://join.slack.com/t/am207-2018fallclass/shared_invite/enQtNDMwOTE5ODk1MzM0LTg4M2U2NDcxOTJiZTliMzY0YmExZGIxNTM3MTA5OGU5MmIwZGZlZmU0MDI1OWM0ODVkODA1ZGM2NGFmM2EzZWQ


AM207 Slack

• Please use for asking ques1ons during lecture and lab (if you're not 
present to raise your hand and ask)

• The channel for the current lecture is #lecture

• The channel for the current lab is #lab

• We'll rename a@er class/lab to #lectureN and #labM

• Don't abuse (we'll announce any other future appropriate uses on 
Piazza)



Advice from your TFs

• Collabora'on -- if you collaborate for assignments (HW and Paper/
Tutorial) for which we allow students to work together PLEASE 
PLEASE SUBMIT ONE ASSIGNMENT.

• Contac'ng Teaching Staff* -- We pride ourselves on being 
available. Please come to OH (the class will be a lot easier if you do 
so).

• You can also email us at am207.info. Right now we have aliases for 
grading (grading@) and info (info@) .



Random Variables

Defini&on. A random variable is a mapping

that assigns a real number  to each outcome .
-  is the sample space. Points
-  in  are called sample outcomes, realiza8ons, or elements.
- Subsets of  are called Events.



Fundamental rules of probability:

1. ; probability must be non-nega5ve

2.

3.  either happen or not happen.

4.



• Say  then  if defined as number of 
heads in the sequence .

• We will assign a real number P(A) to every event A, called the 
probability of A.

• We also call P a probability distribuBon or a probability measure.



Probability as frequency



A Murder Mystery
(from the book: Model Based Machine Learning)



• Mr Black is dead

• We represent the murderer with a random variable murderer 
whose value we dont know. This variable equals either Auburn or 
Grey.

•

• The "prior" distribu@on for murder is the Bernoulli: 



Evidence and condi+onal probability

• an ornate ceremonial dagger and an old army revolver are found. 
We thus introduce a new random variable weapon, in addi:on to 
the exis:ng random variable murderer.

• , 







The joint Probability distribu3on



A probabilis+c model is:

• A set of random variables,

• A joint probability distribu7on over these variables (i.e. a distribu7on 
that assigns a probability to every configura7on of these variables such 
that the probabili7es add up to 1 over all possible configura7ons).

Now we condi*on on some random variables and learn the values of 
others.

(paraphrased from Model Based Machine Learning)



Rules

1.

2.

 is called the marginal distribu.on of A, obtained by summing 
or marginalizing over .



Condi&onal Rule



Marginal Rule



Observa(on and Inference

• Dr Bayes spots a bullet lodged in the book case.

The process of compu-ng revised probability distribu-ons a8er we 
have observed the values of some the random variables, is called 

inference.

• a principled way from prior to posterior





Bayes Theorem: Inference without compu6ng the joint 
distribu6on

Why? The joint can be computa3onally hard. Some3mes there are 
two many "factors"



The evidence is just a normalizer and can o3en be ignored.

The likelihood function is NOT a probability distribu3on over weapon 
(which is known!). It is a func3on of the random variable murderer.



Just ignore the fact that we are in a square!



Lets get precise



Cumula&ve distribu&on Func&on

The cumula&ve distribu&on func&on, or the CDF, is a func0on

,

 defined by

Some%mes also just called distribu(on.



Let  be the random variable represen2ng the number of heads in 
two coin tosses. Then  = 0, 1 or 2.

CDF:



Probability Mass Func1on

 is called a discrete random variable if it takes countably many 
values .

We define the probability func/on or the probability mass 
func/on (pmf) for X by:



The pmf for the number of heads in two coin tosses:



Probability Density func2on (pdf)

A random variable is called a con$nuous random variable if there 
exists a func5on  such that  for all x, 

 and for every a ≤ b,

Note:  for every . Confusing!



CDF for con*nuous random variables

and  at all points x at which  is differen2able.

Con$nuous pdfs can be > 1. cdfs bounded in [0,1].



A con&nuous example: the Uniform(0,1) Distribu&on

pdf:

cdf:



cdf:



Marginals and 
Condi-onals

More generally for hidden variables :



Marginals

Marginal mass func.ons are defined in analog to probabili.es:

Marginal densi,es are defined using integrals:

probability.html


Condi&onals

Condi&onal mass func&on is a condi&onal probability:

The same formula holds for densi0es with some addi0onal 
requirements  and interpreta0on:



Bernoulli pmf:

for p in the range 0 to 1.

for x in the set {0,1}.

What is the cdf?



The big Ideas
create and simulate a data story
perform inference using data story



Data story

• a story of how the data came to be.

• may be a causal story, or a descrip7ve one (correla7onal, 
associa7ve).

• The story must be sufficient to specify an algorithm to simulate 
new data*.

• a formal probability model.



tossing a globe in the air experiment

• toss and catch it. When you catch it, see whats under index 
finger

• mark W for water, L for land.

• figure how much of the earth is covered in water

• thus the "data" is the frac=on of W tosses



Probabilis)c Model

1. The true propor,on of water is .

2. Bernoulli probability for each globe toss, where  is thus the 
probability that you get a W. This assump,on is one of being 
Iden%cally Distributed.

3. Each globe toss is Independent of the other.

Assump&ons 2 and 3 taken together are called IID, or Independent 
and Iden*ally Distributed Data.



Expecta(ons, LLN, Monte Carlo, and the CLT

• Expecta)ons and some nota)on

• The Law of large numbers

• Simula)on and Monte Carlo for Integra)on

• Sampling and the CLT

• Errors in Monte Carlo



Expecta(on 

Why calculate it?

• we'll see it corresponds to the frequen4st no4on of probability

• we o8en want point es4mates

Expecta(ons are always with respect to a pmf or density. O8en just 
called the mean of the mass func(on or density. More weight to 
more probable values.



For the discrete random variable :

Con$nuous case:



Nota%on

The expected value, or mean, or first moment, of X is defined to be

assuming that the sum (or integral) is well defined.

The discrete sum can be said to be an integral with respect to a 
coun5ng measure.



LOTUS: Law of the unconscious sta4s4cian

Also known as The rule of the lazy sta/s/cian.

Theorem:

if ,



Applica'on: Probability as Expecta'on

Let A be an event and let  (Indicator for event A)

Then:



Ever longer sequences for means



Law of Large numbers

Let  be a sequence of IID values from random 
variable , which has finite mean . Let:

Then:



Frequen'st Interpreta'on of probability

Suppose . 

Now if we take a long sequence seq=10010011100.... from , 
then

mean(seq) as length(seq)



Monte Carlo Algorithm

• use randomness to solve what is o2en a determinis3c problem

• applica3on of the law of large numbers

• integrals, expecta3ons, marginaliza3on

• we'll study op3miza3on, integra3on, and obtaining draws from a 
probability distribu3on



...I wondered whether a more prac0cal 
method than “abstract thinking” might 

not be to lay it out say one hundred 
0mes and simply observe and count 

the number of successful plays



...and more generally how to change 
processes described by certain 
differen6al equa6ons into an 

equivalent form interpretable as a 
succession of random opera6ons

— Stanislaw Ulam



es#ma#ng 

If :



Formalize Monte Carlo Integra1on idea
For Uniform pdf: 

From LOTUS and the law of large numbers:



Example

def f(x):
    return x**2 + 4*x*np.sin(x)
def intf(x):
    return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;    
b = 3;
N= 10000
X = np.random.uniform(low=a, high=b, size=N)
Y =f(X)
V = b-a
Imc= V * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))

Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251



Accuracy as a func+on of the number of samples



Variance of the es.mate



M replica*ons of N coin tosses



sample means: 200 replica/ons of N coin tosses



In limit  of replica/ons, each of the expecta/ons in RHS 
can be replaced by the popula/on mean  using the law of large 
numbers! Thus:

In limit  of replica/ons the expecta/on value of the sample 
means converges to the popula/on mean.



Distribu(on of Sample Means



Now let underlying distribu1on have well defined mean  AND a 
well defined variance .

Now in limit , each of the variances in the RHS can be 
replaced by the popula;on variance using the law of large numbers! 
Thus:



The Central Limit Theorem (CLT)

Let  be a sequence of IID values from a random 
variable . Suppose that  has the finite mean  AND finite 
variance . Then:

 converges to



Meaning

• weight-watchers’ study of 1000 people, average weight is 150 
lbs with  of 30lbs.

• Randomly choose many samples of 100 people each, the mean 
weights of those samples would cluster around 150lbs with a 
standard error of 3lbs.

• a different sample of 100 people with an average weight of 
170lbs would be more than 6 standard errors beyond the 
populaDon mean.



Back to Monte Carlo

We want to calculate:

• Whatever  is, the variance of the sampling distribu8on of 
the mean goes down as 

• Thus  goes down as 



Why is this important?

• In higher dimensions , the CLT s3ll holds and the error s3ll 

scales as .

• How does this compete with numerical integra3on? For 
:

• le? or right rule: , Midpoint rule: 

• Trapezoid: , Simpson: 



Basic Numerical Integra1on idea

(from wikipedia)



Soon

In order to calculate expecta/ons, do integrals, and do sta/s/cs, 
we must learn how to do

SAMPLING



A taste: Inverse transform



algorithm

The CDF  must be inver1ble!

1. get a uniform sample  from 

2. solve for  yielding a new equa8on  where  is the 
CDF of the distribu8on we desire.

3. repeat.



Example: exponen,al

pdf:  for  and  otherwise.

Solving for 



code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()



Hit or miss

• Generate samples from a uniform distribu3on with support on 
the rectangle

• See how many fall below  at a specific  sliver.

This is the basic idea behind rejec/on sampling


