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AM207/ Class Infrastructure

e Website am207/.info
e Join Piazza
e Join Slack

e We may add Twitter if we're feeling adventurous so stay posted
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https://am207.info
https://piazza.com/class/jlo4e4ari3r4wd
https://join.slack.com/t/am207-2018fallclass/shared_invite/enQtNDMwOTE5ODk1MzM0LTg4M2U2NDcxOTJiZTliMzY0YmExZGIxNTM3MTA5OGU5MmIwZGZlZmU0MDI1OWM0ODVkODA1ZGM2NGFmM2EzZWQ

AM207/ Slack

e Please use for asking questions during lecture and lab (if you're not
present to raise your hand and ask)

e The channel for the current lecture is #lecture
e The channel for the current lab is #lab
e We'll rename after class/lab to #lectureN and #labM

 Don't abuse (we'll announce any other future appropriate uses on
Piazza)
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Advice from your TFs

e Collaboration -- if you collaborate for assignments (HW and Paper/
Tutorial) for which we allow students to work together PLEASE
PLEASE SUBMIT ONE ASSIGNMENT.

e Contacting Teaching Staff* -- We pride ourselves on being
available. Please come to OH (the class will be a lot easier if you do

SO).

 You can also email us at am207/.info. Right now we have aliases for
grading (grading@) and info (info@) .
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Random Variables

Definition. A random variable is a mapping

X: 00— R

that assigns a real number X (w) to each outcome w.
- ) is the sample space. Points

- w In  are called sample outcomes, realizations, or elements.
- Subsets of (2 are called Events.
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Fundamental rules of probability:

1. p(X) >= 0; probability must be non-negative
2.0<p(X) <1
3. p(X) + p(X ) =1 either happen or not happen.

4. p(X+Y)=p(X)+p(Y) - p(X,Y)
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 Sayw = HHTTTTHTT then X(w) = 3 if defined as number of
heads in the sequence w.

 We will assign a real number P(A) to every event A, called the
probability of A.

e We also call P a probability distribution or a probability measure.
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Probability as frequency

P(A

.9
|
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A Murder Mystery



e Mr Black is dead

e We represent the murderer with a random variable murderer
whose value we dont know. This variable equals either Auburn or
Grey.

e p(murderer = Auburn) = 0.7

e The "prior" distribution for murder is the Bernoulli:
murderer ~ Bernoulli(0.7)
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Evidence and conditional probability

e an ornate ceremonial dagger and an old army revolver are found.
We thus introduce a new random variable weapon, in addition to

the existing random variable murderer.

* p(weapon = revolver | murderer = grey) = 0.9,
p(weapon = revolver | murderer = auburn) = 0.2
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The joint Probability distribution

| 2

P(weapon,murderer) P(murderer) P(weapon|murderer)
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A probabilistic model is:

e A set of random variables,

e Ajoint probability distribution over these variables (i.e. a distribution
that assigns a probability to every configuration of these variables such
that the probabilities add up to 1 over all possible configurations).

Now we condition on some random variables and learn the values of
others.

(paraphrased from Model Based Machine Learning)
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Rules
1. P(A,B) = P(A | B)P(B)
2.P(A)=) P(A,B)=) P(A|B)P(B)

P(A) is called the marginal distribution of A, obtained by summing
or marginalizing over B.
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Marginal Rule

Vanilla  Chocolate
Cone 40 60
Cup 20 30
P(Vanilla) = P(Chocolate) =
60/150=0.4  90/150=0.6

P(Cone) =
100/150 = 0.66

P(Cup) =
50/150=0.33



Observation and Inference

 Dr Bayes spots a bullet lodged in the book case.

The process of computing revised probability distributions after we
have observed the values of some the random variables, is called
inference.

e a principled way from prior to posterior
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N

0.66 > € 0.34——
Murderer

v

«——0.30 > € 0.70
Murderer
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Bayes Theorem: Inference without computing the joint
distribution

Why? The joint can be computationally hard. Sometimes there are
two many "factors”

p(z|y)p(y) p(z|y)p(y) p(z | y) p(y)

PVI®) =" TS pey) S, | 1))
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P(weapon|murderer) P(murderer)

P(murderer|weapon) = B |
weapon

P(weapon) = Z P(weapon|murderer) P(murderer)

murderer

, likelihood X prior
posterior = . :
evidence

The evidence is just a normalizer and can often be ignored.

The likelihood function is NOT a probability distribution over weapon
(which is known!). It is a function of the random variable murderer.
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0.70
Murderer

Just ignore the fact that we are in a square!
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| ets get precise



Cumulative distribution Function

The cumulative distribution function, or the CDF, is a function
Fx :R — [0,1],
defined by
Fx(z) =p(X < z).

Sometimes also just called distribution.
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Let X be the random variable representing the number of heads in
two coin tosses. Then £ =0, 1 or 2.

CDF:

FX ((I)) 4
1 O——
1Ot O—)
00+
r
0 1 2 T
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Probability Mass Function

X is called a discrete random variable if it takes countably many
values {513‘1,5132, .. }

We define the probability function or the probability mass
function (pmf) for X by:
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The pmf for the number of heads in two coin tosses:

fx(z)

-
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Probability Density function (pdf)

A random variable is called a continuous random variable if there
exists a function fx such that fx(x) > 0 for all x,

/ fx(x)dx = 1 and for every a < b,

b
pla< X <b) = / fx(x)dx

Note: p(X = x) = 0 for every z. Confusing!
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CDF for continuous random variables

Fx() = [  Fx(t)dt

and fy(a) = LX)

Continuous pdfs can be > 1. cdfs bounded in [0,1].

at all points x at which F'yx is differentiable.
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A continuous example: the Uniform(0,1) Distribution

1 for0<z<1
0 otherwise.

fx(z) = {

cdf:
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cdf:
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&AM 207

Marginals and
Conditionals

More generally for hidden variables z:

p(z) =) p(z,2) = > p(z(2)p(2)



Marginals

Marginal mass functions are defined in analog to probabilities:

fx(z)=p(X=2)=> flz,y); fr¥) =pY =y)=)» f(=z,9).
Yy T
Marginal densities are defined using integrals:

Fx(z) = / dyf(z,y); fr(y) = / dzf(z,y).
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probability.html

Conditionals

Conditional mass function is a conditional probability:

fxiy(z|y) =p(X =z |Y =y) = pX=zY=y) _ fxv(zy)

p(Y =y) fr(y)

The same formula holds for densities with some additional
requirements fy (y) > 0 and interpretation:

pXEA|Y=9)= [ furley)ds
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Bernoulli pmf:

for p in the range O to 1.

flz)=p"(1—p)**
for x in the set {0,1}.
What is the cdf?
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The big ldeas

create and simulate a data story
perform inference using data story
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Data story

e a story of how the data came to be.

e may be a causal story, or a descriptive one (correlational,
associative).

e The story must be sufficient to specify an algorithm to simulate
new data™.

e a formal probability model.
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tossing a globe in the air experiment

e toss and catch it. When you catch it, see whats under index
finger

e mark W for water, L for land.
e figure how much of the earth is covered in water

e thus the "data" is the fraction of W tosses

@AM 207



Probabilistic Model

1. The true proportion of water is p.

2. Bernoulli probability for each globe toss, where p is thus the
probability that you get a W. This assumption is one of being
Identically Distributed.

3. Each globe toss is Independent of the other.

Assumptions 2 and 3 taken together are called IID, or Independent
and Identially Distributed Data.
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Expectations, LLN, Monte Carlo, and the CLT

e Expectations and some notation

e The Law of large numbers

e Simulation and Monte Carlo for Integration
e Sampling and the CLT

e Errorsin Monte Carlo
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Expectation E¢| X]
Why calculate it?

e we'll see it corresponds to the frequentist notion of probability
e we often want point estimates

Expectations are always with respect to a pmf or density. Often just
called the mean of the mass function or density. More weight to
more probable values.
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For the discrete random variable X:

Ef[X] =) =z f(x).
Continuous case:

E,[X] = / z f(z)dz — / 2dF(z)
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Notation

The expected value, or mean, or first moment, of X is defined to be

{Z rf(xz) if X is discrete

[zf(z)dz if X is continuous

EfX /:BdF

assuming that the sum (or integral) is well defined.

The discrete sum can be said to be an integral with respect to a
counting measure.
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LOTUS: Law of the unconscious statistician

Also known as The rule of the lazy statistician.

Theorem:

ifY = r(X),

EY] = /r(a:)dF(a:)
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Application: Probability as Expectation

Let A be an event and let r(x) = I4(z) (Indicator for event A)

Then:
B/14(X)] = [ Ia(2)dF(2) = [ fx(e)do = p(X € 4)
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Ever longer sequences for means

0.9
0.8
0.7
0.6
0.5 m——

Fraction/of Heads
04

0.3
0.2
0.1
0.0

10° 10° N 102 10° 10*

&AM 207



Law of Large numbers

Let 21, 25,...,x, be asequence of IID values from random
variable X, which has finite mean p. Let:

1
Snzgzzzlwza

Then:

S, — pasn — oo.
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Frequentist Interpretation of probability
Ep(I4(X)] =p(X € A)

Suppose Z = I4(X) ~ Bernoulli(p = P(A)).

Now if we take a long sequence seq=10010011100. ... from Z,
then

P(A) =mean(seq) as length(seq)— oo
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Monte Carlo Algorithm

e use randomness to solve what is often a deterministic problem
e application of the law of large numbers
e integrals, expectations, marginalization

o we'll study optimization, integration, and obtaining draws from a
probability distribution
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...l wondered whether a more practical
method than “abstract thinking” might
not be to lay it out say one hundred
times and simply observe and count
the number of successful plays
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...and more generally how to change
processes described by certain
differential equations into an
equivalent form interpretable as a
succession of random operations

— Stanislaw Ulam
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estimating =
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Formalize Monte Carlo Integration idea

For Uniform pdf: Uy, (z) =1/V =1/(b— a)

b b
J - / #(@)Uns () da = / f(z)dz/V = 1)V

From LOTUS and the law of large numbers:

o1
I:V><J=V><EU[f]:VXJL%N;]J"(%)



Example

3
I= /2 [2® + 4z sin(z)] dz.

def f£(x):
return x**2 + 4*x*np.sin(x)
def intf(x):
return x*¥*3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)

a = 2;

b = 3;

N= 10000

X = np.random.uniform(low=a, high=b, size=N)
Y =f(X)

V = b-a

Imc= V * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print("Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a))

Monte Carlo estimation= 11.8120823531 Exact number= 11.8113589251
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Accuracy as a function of the number of samples
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Variance of the estimate
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M replications of N coin tosses
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sample means: 200 replications of N coin tosses
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E{R} (Na‘:) — E{R} (2131 + To+. .. —|—£13N) — E{R} (:131) + E{R} (mg)—l—. . —I—E{R} (:BN)

In limit M — oo of replications, each of the expectations in RHS
can be replaced by the population mean p using the law of large
numbers! Thus:

In limit M — oo of replications the expectation value of the sample
means converges to the population mean.
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Now let underlying distribution have well defined mean 1 AND a
well defined variance o*.

V{R} (NQ_Z) — V{R} (.’131 —+ To+. .. —I—.’BN) — V:[R} (.’Bl) - V;[R} (wg)—l—. .. —I—V{R} (:BN)

Now in limit M — oo, each of the variances in the RHS can be

replaced by the population variance using the law of large numbers!
Thus:

Viry(NZ) = No”
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The Central Limit Theorem (CLT)

Let 21, z5,...,x, be asequence of IID values from a random
variable X. Suppose that X has the finite mean u AND finite
variance &*. Then:

1 n
S, = — E x;, converges to
n
i=1

0.2

Sp ~ N(u,—)asn — oo.
n
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Meaning

e weight-watchers’ study of 1000 people, average weight is 150
lbs with ¢ of 30Ibs.

e Randomly choose many samples of 100 people each, the mean

weights of those samples would cluster around 1501bs with a
standard error of 3lbs.

e 3 different sample of 100 people with an average weight of
17/0Ilbs would be more than 6 standard errors beyond the
population mean.
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Back to Monte Carlo

We want to calculate:
1 n
Su(f) == ) flxi)
i=1

» Whatever V[f(X)] is, the variance of the sampling distribution of
the mean goes down as 1/n

* Thus s goesdownas1/,/n
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Why is this important?

e |n higher dimensions d, the CLT still holds and the error still

1
scales as —.

/n

e How does this compete with numerical integration? For
n = N4

e left or right rule: o< 1/n, Midpoint rule:  1/n?

o Trapezoid: o< 1/n?, Simpson: o 1/n*
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Basic Numerical Integration idea

(from wikipedia)

350
300 |
250 |—u

200 | T
150 |
100 |
50 |
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Soon

In order to calculate expectations, do integrals, and do statistics,
we must learn how to do

SAMPLING
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A taste:

Inverse transform

f(x)
©C = N W A OO N ® ©
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algorithm

The CDF F' must be invertible!

1. get a uniform sample u from Uni f(0, 1)

2. solve for z yielding a new equation = F~*(u) where F is the
CDF of the distribution we desire.

3. repeat.
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Example: exponential

pdf: f(z) = ;e—‘”“ forz > 0 and f(x) = 0 otherwise.

u=/ le_"”’/)‘d:zz' =1— e @A
0 A

Solving for x

r=—AIn(1 — u)
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code

p = lambda x: np.exp(-x)

CDF = lambda x: 1-np.exp(-x)

invCDF = lambda r: -np.log(l-r) # invert the CDF

xmin = @ # the lower limit of our domain

xmax = 6 # the upper limit of our domain

rmin = CDF(xmin)

rmax = CDF(xmax)

N = 10000

# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution

R = np.random.uniform(rmin, rmax, N)

X = invCDF(R)

hinfo = np.histogram(X, 100)

plt.hist(X,bins=100, label=u'Samples');

# plot our (normalized) function

xvals=np. linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()
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Hit or miss

e Generate samples from a uniform distribution with support on
the rectangle

» See how many fall below y(z) at a specific z sliver.

This is the basic idea behind rejection sampling
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