
Lecture 18

Formal Tests, NUTS

Sampling with pymc3

Diagnos(cs

Model

from pymc3.math import switch
with pm.Model() as coaldis1:
 early_mean = pm.Exponential('early_mean', 1)
 late_mean = pm.Exponential('late_mean', 1)
 switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
 rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
 disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
 stepper=pm.Metropolis()
 trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]

Model convergence

• traces white noisy

• diagnose autocorrela3on, check parameter
correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m samples

• traceplots from different star7ng points,
different chains

• formal tests: Gewecke, Gelman-Rubin,
Effec7ve Sample Size

Imputa'on

>>>disasters_missing = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])
>>>disasters_masked = np.ma.masked_values(disasters_missing, value=-999)

An array with mask set to True where data is missing.

with pm.Model() as missing_data_model:
 switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=len(disasters_masked))
 early_mean = pm.Exponential('early_mean', lam=1.)
 late_mean = pm.Exponential('late_mean', lam=1.)
 idx = np.arange(len(disasters_masked))
 rate = pm.Deterministic('rate', switch(switchpoint >= idx, early_mean, late_mean))
 disasters = pm.Poisson('disasters', rate, observed=disasters_masked)

with missing_data_model:
 stepper=pm.Metropolis()
 trace_missing = pm.sample(10000, step=stepper)

pm.summary(trace_missing, varnames=['disasters_missing'])

disasters_missing:

 Mean SD MC Error 95% HPD interval

 2.189 1.825 0.078 [0.000, 6.000]
 0.950 0.980 0.028 [0.000, 3.000]

 Posterior quantiles:
 2.5 25 50 75 97.5
 |--------------|==============|==============|--------------|

 0.000 1.000 2.000 3.000 6.000
 0.000 0.000 1.000 2.000 3.000

Gewecke: difference of means

with coaldis1:
 stepper=pm.Metropolis()
 tr = pm.sample(2000, step=stepper)

z = geweke(tr, intervals=15)

plt.scatter(*z['early_mean'].T)
plt.hlines([-1,1], 0, 1000, linestyles='dotted')
plt.xlim(0, 1000)

Gelman-Rubin

Mul$ple chains..compute within chain
variance and compare to between chain
variance

Use weighted average of and to es1mate variance of the
sta1onary distribu1on pm.gelman_rubin(trace):

Overes&mates our variance, but unbiased under sta&onarity.

Ra#o of the es#mated distribu#on variance to asympto#c one:

ESS: Effec(ve Sample Size: a
measure of correla(on

IIDness of draws decreases

pm.effective_n(trace)

{'early_mean': 16857.0,
 'early_mean_log_': 12004.0,
 'late_mean': 27344.0,
 'late_mean_log_': 27195.0,
 'switchpoint': 195.0}

(40000 samples)

Posterior Predic+ve Checks

 with coaldis1:
 sim = pm.sample_ppc(t2, samples=200)

Non-Iden(fiability and
Correla(on

Simple Example: generate data from
N(0,1).

Then fit:

Correla'on diagnos'c

sigma = pm.HalfCauchy("sigma", beta=1)
alpha1=pm.Uniform('alpha1', lower=-10**6, upper=10**6)
alpha2=pm.Uniform('alpha2', lower=-10**6, upper=10**6)
mu = pm.Deterministic("mu", alpha1 + alpha2)
y = pm.Normal("data", mu=mu, sd=sigma, observed=data)

>>>pm.effective_n(traceni)
{'alpha1': 1.0,
 'alpha1_interval_': 1.0,
 'alpha2': 1.0,
 'alpha2_interval_': 1.0,
 'mu': 26411.0,
 'sigma': 39215.0,
 'sigma_log_': 39301.0}
 >>>pm.gelman_rubin(traceni)
 {'alpha1': 1.7439881580327452,
 'alpha1_interval_': 1.7439881580160093,
 'alpha2': 1.7438626593529831,
 'alpha2_interval_': 1.7438626593368223,
 'mu': 0.99999710182062695,
 'sigma': 1.0000248056117549,
 'sigma_log_': 1.0000261752214563}

Is autocorrela,on bad?

• depends on what you want to do

• this is true for in general

• does not ma5er much for means

• ma5ers for credible intervals as we need tails

trying to fix

with pm.Model() as ni2:
 sigma = pm.HalfCauchy("sigma", beta=1)
 alpha1=pm.Normal('alpha1', mu=5, sd=1)
 alpha2=pm.Normal('alpha2', mu=-5, sd=1)
 mu = pm.Deterministic("mu", alpha1 + alpha2)
 y = pm.Normal("data", mu=mu, sd=sigma, observed=data)
 #stepper=pm.Metropolis()
 #traceni2 = pm.sample(100000, step=stepper, njobs=2)
 traceni2 = pm.sample(100000)

Thoughts on Diagnos-cs

• be paranoid, you only know you have not converged, not if you
have

• what if you missed out an en:re lobe? Thus mul:ple chains and
mul:ple star:ng points.

• check posterior correla:ons, trace autocorrela:on, effec:ve ,
the look of the trace, the acceptance rate

• check gewecke and gelman-rubin

HMC

Recap of Hamiltonian Flow ideas

• start with

• augment using momentum to

• the momentum comes from a kine3c enegy which looks
something like

• write as

• then

Basic Idealized Idea

1. Move on a level set of the Hamiltonian . Pick up samples
at will with acceptance probability 1. Why? Reversibility, Flow.

2. Fire thrusters, that is sample , from kineAc energy distribuAon,
to move to another level set. Why? Cover whole Typical set

3. Repeat

Momentum resampling

Draw from a distribu/on that is
determined by the distribu/on of
momentum, i.e. for
example, and a9empt to explore the level
sets.

Firing the thruster moves us between
level sets!

Resampling Efficiency

Let as the transi+on distribu+on of
energies induced by a momentum
resampling using at
a given posi+on .

If narrow compared to the marginal
energy distribu7on : random walk
amongst level sets proceeds slowly.

If matches : independent
samples generated from the marginal
energy distribu7on very efficiently.

Tuning: choice of Kine.c energy

• Set to the covariance of the target distribu4on: maximally de-correlate
the target. Do in warmup (tune) phase.

• can see this by , Then

 becomes

if

Thus de-correlate target. Generalize to arbitrary distribu7ons.

Discre'za'on problems

•

•

• off-diagonal terms of size makes
volume not preserved

• leads to dri7 over 8me

• use "leapfrog" instead

Symple'c Leapfrog (why
volume needs conserva'on 1)

• Only shear transforms allowed, will preserve volume.

•

•

•

• s7ll error exists, oscillatory, so reversibility not
achieved

• use superman transform. Works even when we are
off level set.

WE ARE MARGINALLY OFF THE LEVEL SETS!

So must consider: acceptance probability

What should we choose as our proposal?

Superman choice

• tack on sign change .
Superman to the rescue!

• proposal now:

• Acceptance:

cri$cal thing with HMC is that our !me evolu!on is always close
to being on a level set if we have no problems with our sympelc$c
integrator. So our always closer to 1, and we have a very efficient
sampler.

Second reason for Volume Conserva2on

From Neal's paper:

The significance of volume preserva4on for MCMC is that we need not
account for any change in volume in the acceptance probability for

Metropolis updates. If we proposed new states using some arbitrary,
non-Hamiltonian, dynamics, we would need to compute the

determinant of the Jacobian matrix for the mapping the dynamics
defines, which might well be infeasible.

Detailed Balance

• obvious for , but for , call it k:

• in limit of regions becoming smaller, H can be thought of as
constant inside the region, and thus the canonical densi9es and
transi9on probs become constant too:

true

HMC Algorithm (momentum reversal could be le8 out if
not within a more complex sampling scheme)

• for i=1:N_samples

• 1. Draw

• 2. Set where the subscript stands for current

• 3.

• 4. Update momentum before going into LeapFrog stage:

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step,

• 6. Complete leapfrog:

HMC (contd)

• for i=1:N_samples

• 7.

• 8.

• 9.

• 10.

• 11. if

• accept

• otherwise reject

def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
 current_q = q_0
 current_p = p_0
 H = np.zeros(N)
 qall = np.zeros(N)
 accept=0
 for j in range(N):
 q = current_q
 p = current_p
 #draw a new p
 p = np.random.normal(0,1)
 current_p=p
 # leap frog
 # Make a half step for momentum at the beginning
 p = p - epsilon*dUdq(q)/2.0
 # alternate full steps for position and momentum
 for i in range(L):
 q = q + epsilon*p
 if (i != L-1):
 p = p - epsilon*dUdq(q)
 #make a half step at the end
 p = p - epsilon*dUdq(q)/2.
 # negate the momentum
 p= -p;
 current_U = U(current_q)
 current_K = K(current_p)
 proposed_U = U(q)
 proposed_K = K(p)
 A=np.exp(current_U-proposed_U+current_K-proposed_K)
 # accept/reject
 if np.random.rand() < A:
 current_q = q
 qall[j]=q
 accept+=1
 else:
 qall[j] = current_q
 H[j] = U(current_q)+K(current_p)
 print("accept=",accept/np.double(N))
 return H, qall

Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)

Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH

Dynamic Ergodicity

Because orbits fill in first, orbital average become "spa6al" expecta6ons

Tuning: and

• find the point at which the orbital expecta3ons converge to the
spa3al expecta3ons..a sort of ergodicity

• , number of itera3ons for which we run the Hamiltonian
dynamics, and which is the (small) length of 3me each itera3on
is run.

L tuning

• in HMC, start increase if for
fixed step size, autocorrela8on is too
much

• Tails correspond to much higher energies,
larger level-set surfaces are larger

• fixed length explores a small por8on of
this set before a momentum resampling
takes us off.

• beCer to set dynamically: NUTS
termina8on criterion

 tuning

• if too small, accurate trajectories but too much 3me

• if too large, we will go off more and thus reject most of the 3me

• op3mal is determined by the "shadow hamiltonian"

• want acceptance to be between 60 and 80 percent in most cases
to have lower bounds of shadow and upper bounds of shadow
close to each other

From HMC to HMC++

• one idea maybe to average over all points
in orbit of length

• To autotune it is be-er to sample from
orbit rather than get last point only:
dynamic ergodicity: 9me average is orbit
average

• NUTS: sample trajectories containing
ini9al point and then sample point from
them with trajectory canonical weights

• need a criterion for when to stop doing
this

NUTS in a nutshell

• termina)on criterion destroys detailed
balance, must rebuild

• sample from trajectory not just
endpoint

• sample backwards and forwards in)me
un)l u-turn

• choose a sample with boltzmann
weights over the trajectory using
mul)nomial sampling

Hierarchicals with NUTS

Normal-Normal Hierarchical Model

 independent experiments, experiment es-ma-ng the
parameter from independent normally distributed data points,

, each with known error variance ; that is,

Gelman 8-schools problem: es2mated coaching effects to
improve SAT scores for school , with sampling variances, .

Sample mean of each group

 with sampling variance

.

Likelihood for using suff-stats, :

Nota%on flexible in allowing a separate
variance for the mean of each group .
Appropriate when the variances differ for
reasons other than number of data pts.

Centered Hierarchical Model

with pm.Model() as schools1:

 mu = pm.Normal('mu', 0, sd=5)
 tau = pm.HalfCauchy('tau', beta=5)
 theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
 obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)

with schools1:
 trace1 = pm.sample(5000, init=None, njobs=2, tune=500)

Small :

{'mu': 101.0,
 'tau': 273.0,
 'tau_log_': 77.0,
 'theta': array([169., 199., 236., 193., 211., 231., 139., 204.])})

• s#ckys are actually trying to drive down
value of trace

• we are in a region of high curvature

High Curvature Issues

High Curvature Issues

• symplec)c integra)on diverges: good
diagnos)c. False posi)ves from
heuris)c.

• sampler needs to have real small steps
to not diverge, but then becomes s)cky

• regions of high curvature o=en have
high energy differences, causing trouble
for microcanonical jump transi)ons.

Hierarchical Models have high
curvature

• characteris*c funnel, also there in MH and gibbs

• reflects high correla*on between levels in tree

• divergences occur in neck

Step size effect

• lower step size be.er for symplec3c integrators, especially in
high curvature regions

• this allows for geometric ergodicity: we go everywhere.

• too small : return of the random walk.

Changing step size

with schools1:
 step = pm.NUTS(target_accept=.85)
 trace1_85 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

85: Acceptance 0.804601458758 Step Size 0.203087336483 Divergence 39
90: Acceptance 0.873340820433 Step Size 0.159223726996 Divergence 18
95: Acceptance 0.923346597897 Step Size 0.126824682121 Divergence 9
99: Acceptance 0.990173791609 Step Size 0.0164237997757 Divergence 5

__

divergences persist. Too curved!

Non-centered model

• could change kine/c energy (riemannian HMC) to make mass matrix dependent upon posi/on

• simpler: reparametrize to reduce levels in hierarchy

Factor dependency of on into a
determinis1c transforma1on between the
layers, leaving the ac1vely sampled
variables uncorrelated.

with pm.Model() as schools2:
 mu = pm.Normal('mu', mu=0, sd=5)
 tau = pm.HalfCauchy('tau', beta=5)
 nu = pm.Normal('nu', mu=0, sd=1, shape=J)
 theta = pm.Deterministic('theta', mu + tau * nu)
 obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)
 trace2 = pm.sample(5000, init=None, njobs=2, tune=500)

:

{'mu': 10000.0,
 'nu': array([10000., 10000., 10000., 10000., 10000., 10000., 10000.,
 10000.]),
 'tau': 6880.0,
 'tau_log_': 5193.0,
 'theta': array([9624., 10000., 10000., 10000., 10000., 10000., 10000.,
 9829.])}

divergent = trace2['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace2)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 8
Percentage of Divergent 0.00160

Divergences and true length of funnel

• Divergences infrequent, and all over.
Mostly false posi9ves.

• Lowering step sizes should make them
go away

with schools2:
 step = pm.NUTS(target_accept=.95)
 trace2_95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

• lower curvature ensures geometric
ergodicity deep in our funnel

• see Betancourt for big discussion

http://mc-stan.org/documentation/case-studies/divergences_and_bias.html

Momentum resampling
Efficiency

• match transi,on to marginal

def resample_plot(t):
 sns.distplot(t['energy']-t['energy'].mean(), label="P(E)")
 sns.distplot(np.diff(t['energy']), label = "p(E | q)")
 plt.legend();
 plt.xlabel("E - <E>")

• if marginal has bigger tails we are in
trouble

• indica5ve here of big energy changes in
high-curvature regions not possible to
boost to.

centered, small step size vs Non-centered

On le&, centered, your sampler is not exploring, so make sure what you are diagnosing. On right, nice match!

