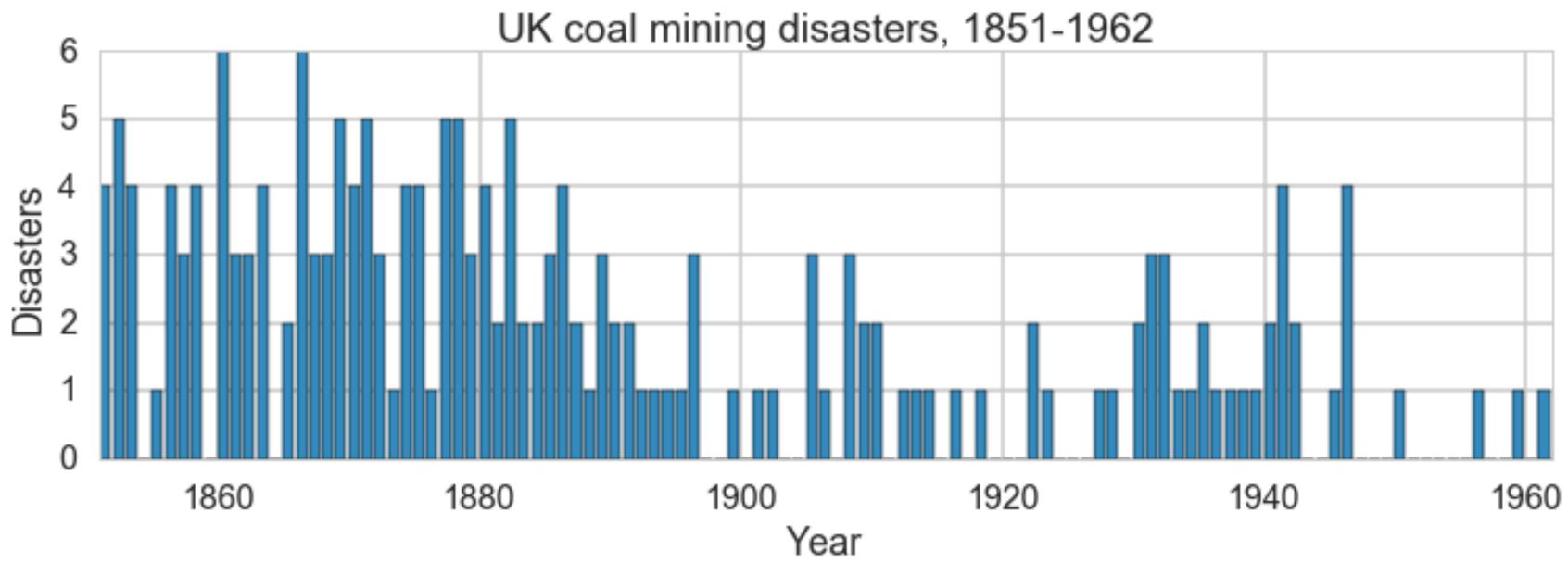
Lecture 18 Formal Tests, NUTS

Sampling with pymc3 Diagnostics

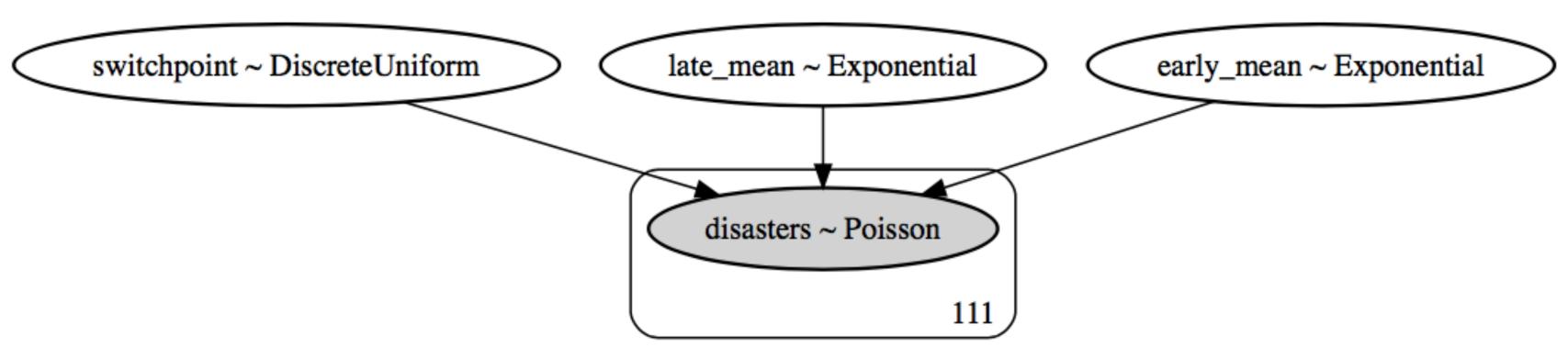


Model

 $y| au, \lambda_1, \lambda_2 \sim Poisson(r_t)$

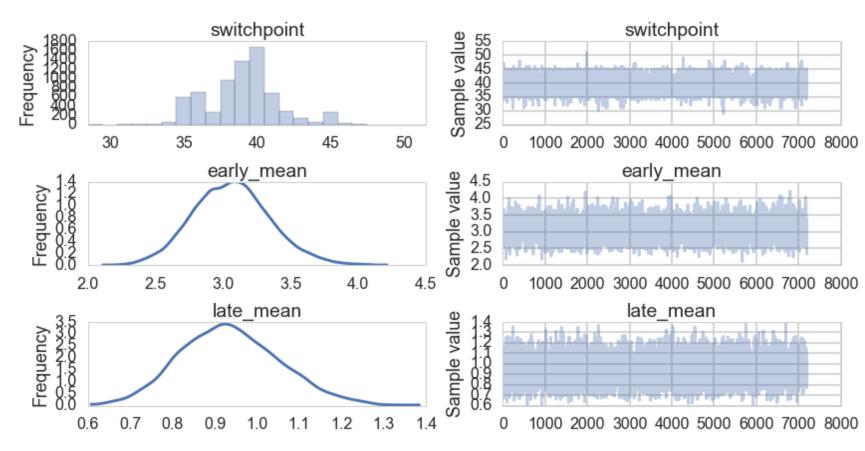
 $r_t = \lambda_1 ext{ if } t < au ext{ else } \lambda_2 ext{ for } t \in [t_l, t_h]$ $au \sim DiscreteUniform(t_l,t_h)$

$$egin{aligned} \lambda_1 &\sim Exp(a)\ \lambda_2 &\sim Exp(b) \end{aligned}$$




```
from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)
```


40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]



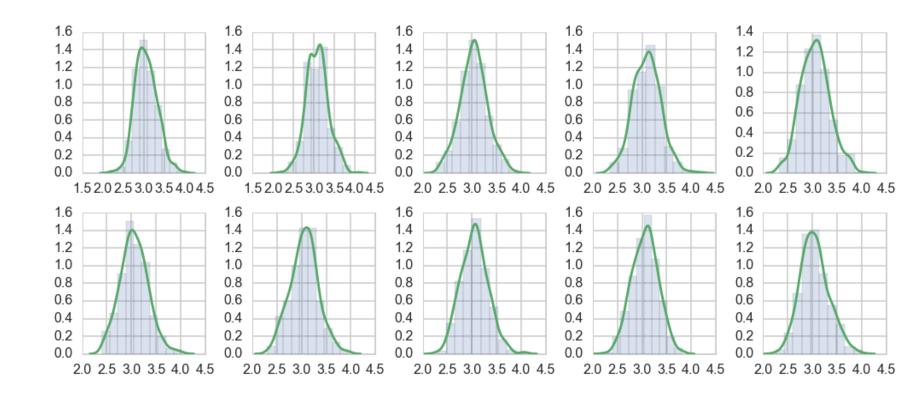
100%|

Model convergence

- traces white noisy
- diagnose autocorrelation, check parameter correlations

pm.trace_to_dataframe(trace).corr()

- visually inspect histogram every m samples
- traceplots from different starting points, different chains
- formal tests: Gewecke, Gelman-Rubin, Effective Sample Size



Imputation

>>>disasters_missing = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]>>>disasters_masked = np.ma.masked_values(disasters_missing, value=-999)

An array with mask set to True where data is missing.

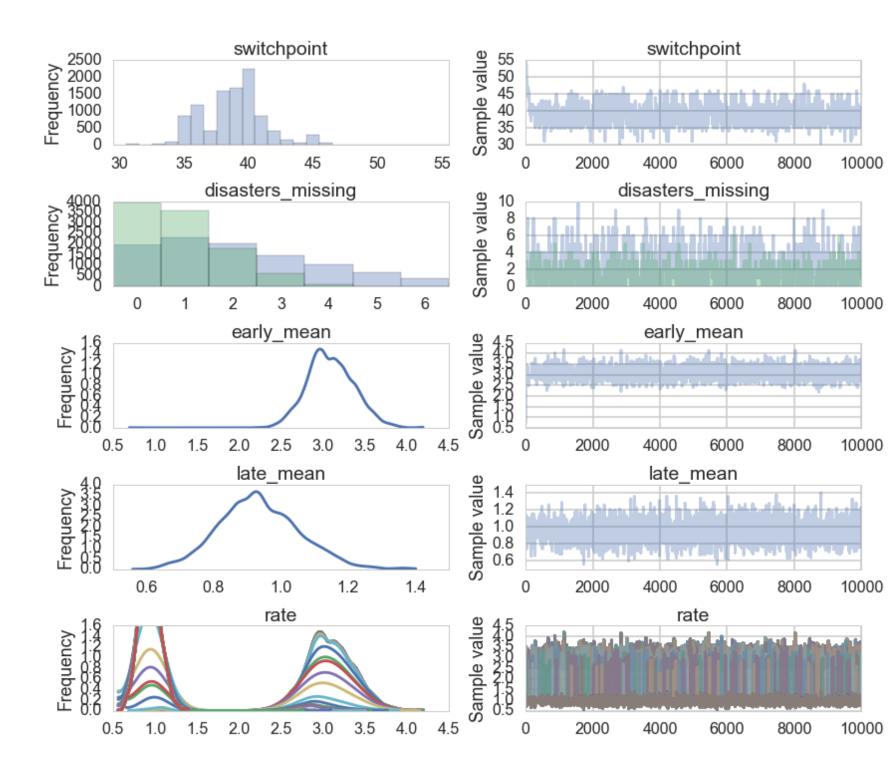

```
with pm.Model() as missing_data_model:
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=len(disasters_masked))
    early_mean = pm.Exponential('early_mean', lam=1.)
    late_mean = pm.Exponential('late_mean', lam=1.)
    idx = np.arange(len(disasters_masked))
    rate = pm.Deterministic('rate', switch(switchpoint >= idx, early_mean, late_mean))
    disasters = pm.Poisson('disasters', rate, observed=disasters_masked)
```

```
with missing_data_model:
    stepper=pm.Metropolis()
    trace_missing = pm.sample(10000, step=stepper)
```

```
pm.summary(trace_missing, varnames=['disasters_missing'])
```

disasters_missing:

Mean	SD	MC Error	95% HPD	interval
2.189	1.825	0.078	[0.000,	6.000]
0.950	0.980	0.028	[0.000,	3.000]
Posterior quar	tiles:			
2.5	25	50	75	97.5
	- ==============	= ===============	==	
0.000	1.000	2.000	3.000	6.000
0.000	0.000	1.000	2.000	3.000



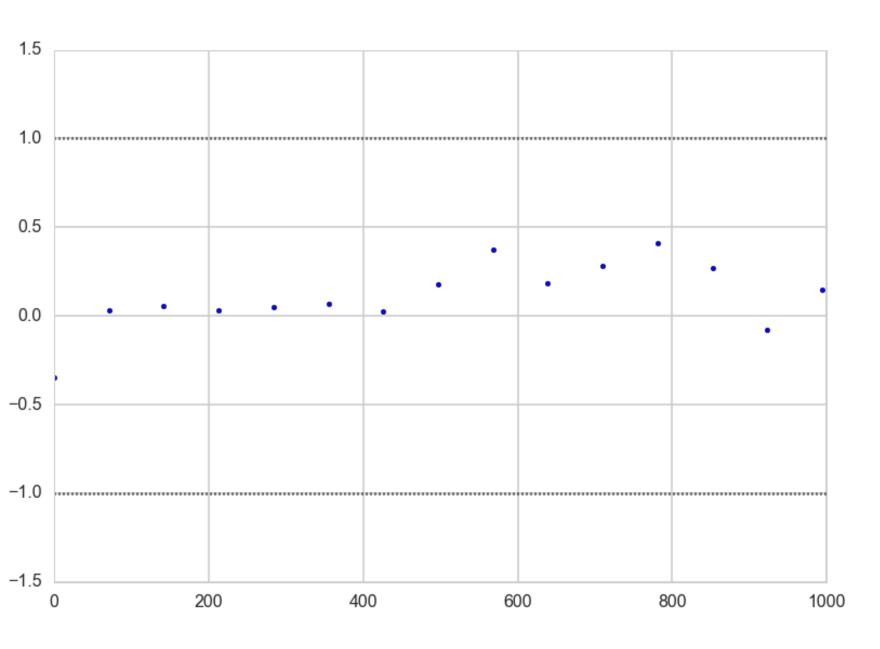
Gewecke: difference of means

$$H_0: \mu_{ heta_1}-\mu_{ heta_2}=0 \implies \mu_{ heta_1- heta_2}=0$$

$$\sigma_{ heta_1- heta_2}=\sqrt{rac{var(heta_1)}{n_1}+rac{var(heta_2)}{n_2}}$$

 $|\mu_{ heta_1}-\mu_{ heta_2}| < 2\sigma_{ heta_1- heta_2}$

ns = 0



with coaldis1: stepper=pm.Metropolis() z = geweke(tr, intervals=15)

plt.scatter(*z['early_mean'].T) plt.hlines([-1,1], 0, 1000, linestyles='dotted') plt.xlim(0, 1000)

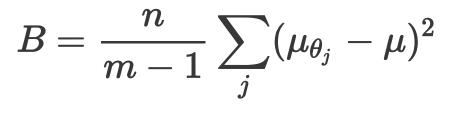

```
tr = pm.sample(2000, step=stepper)
```

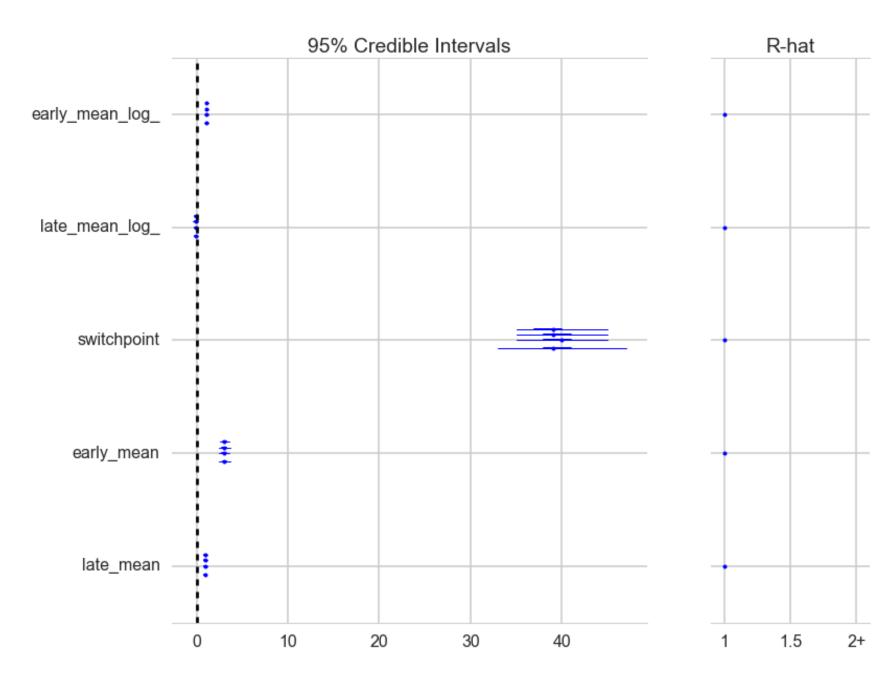
Gelman-Rubin

Multiple chains..compute within chain variance and compare to between chain variance

$$s_j^2 = rac{1}{n-1}\sum_i (heta_{ij}-\mu_{ heta_j})^2$$

$$w=rac{1}{m}\sum_{j}s_{j}^{2};\,\,\mu=rac{1}{m}\sum_{j}\mu_{ heta_{j}}$$





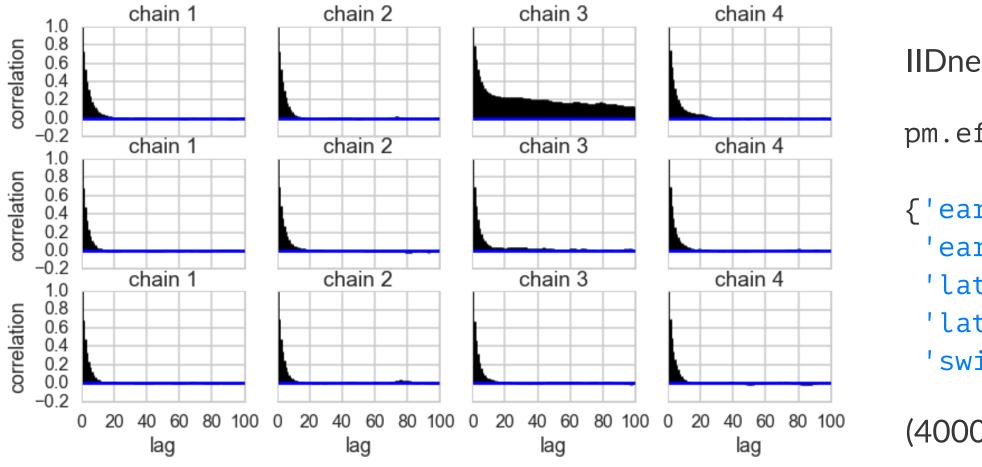
Use weighted average of w and B to estimate variance of the stationary distribution pm.gelman_rubin(trace):

$$\hat{Var}(heta) = (1-rac{1}{n})w + rac{1}{n}B$$

Overestimates our variance, but unbiased under stationarity. Ratio of the estimated distribution variance to asymptotic one:

$$\hat{R} = \sqrt{rac{\hat{Var}(heta)}{w}}$$

ESS: Effective Sample Size: a measure of correlation

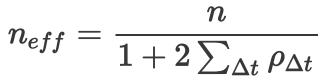


IIDness of draws decreases

pm.effective_n(trace)

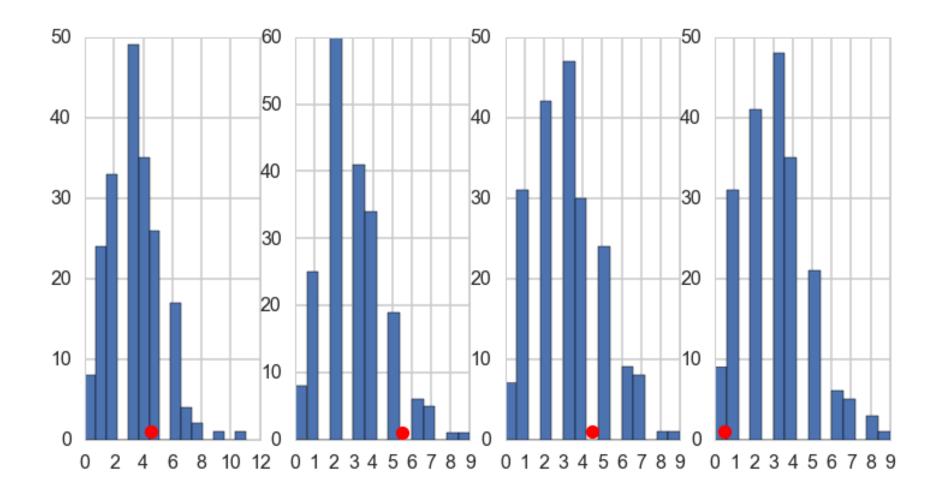
{'early_mean': 16857.0, 'early_mean_log_': 12004.0, 'late_mean': 27344.0, 'late_mean_log_': 27195.0, 'switchpoint': 195.0}

(40000 samples)



Posterior Predictive Checks

```
with coaldis1:
   sim = pm.sample_ppc(t2, samples=200)
```



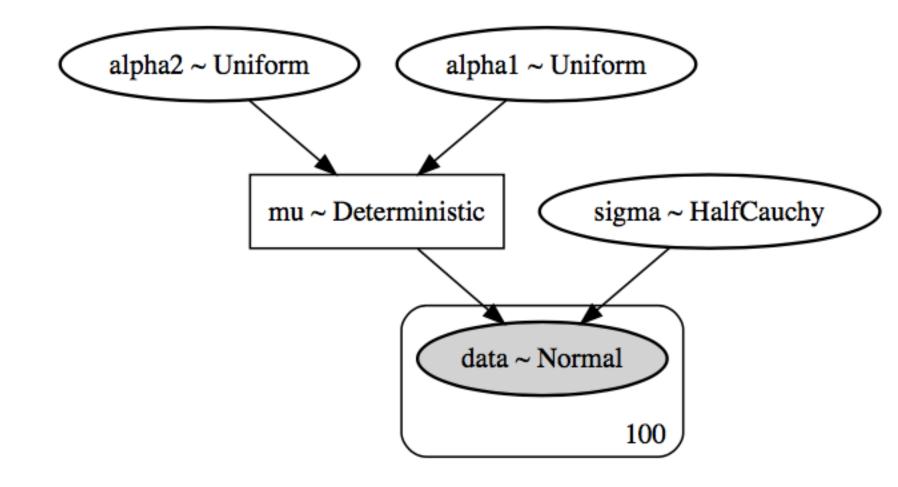
Non-Identifiability and Correlation

Simple Example: generate data from N(0,1).

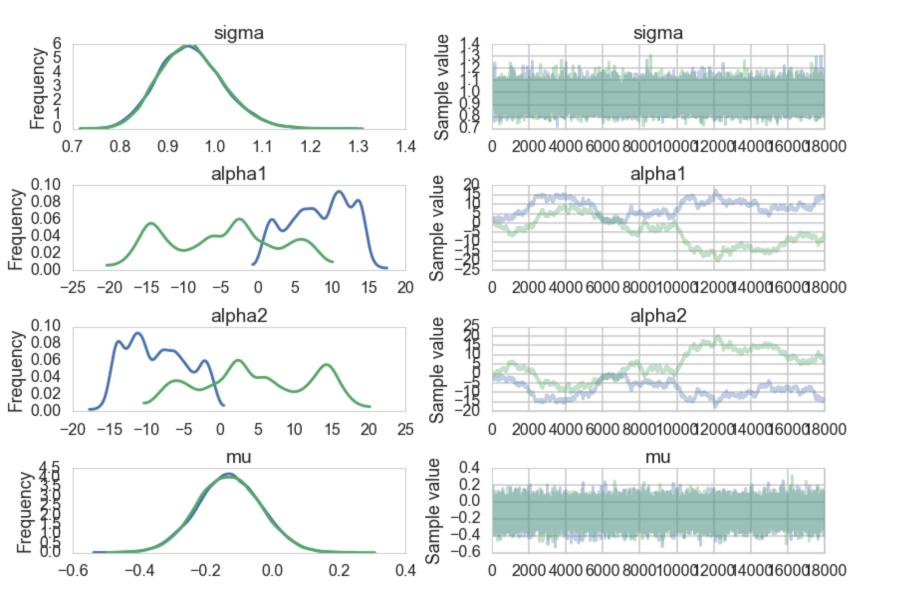
Then fit: $y \sim N(\mu,\sigma)$

$$\mu=lpha_1+lpha_2$$

$$lpha_1 \sim Unif(-\infty,\infty) \ lpha_2 \sim Unif(-\infty,\infty) \ \sigma \sim HalfCauchy(0,1)$$



Correlation diagnostic



sigma = pm.HalfCauchy("sigma", beta=1) alpha1=pm.Uniform('alpha1', lower=-10**6, upper=10**6) alpha2=pm.Uniform('alpha2', lower=-10**6, upper=10**6) mu = pm.Deterministic("mu", alpha1 + alpha2) y = pm.Normal("data", mu=mu, sd=sigma, observed=data)

df=pm.trace_to_ df.corr()				
	sigma			
sigm	a 1.000000			
mu	-0.000115			
alpha	a 1 -0.003153			
alpha	a2 0.003152			

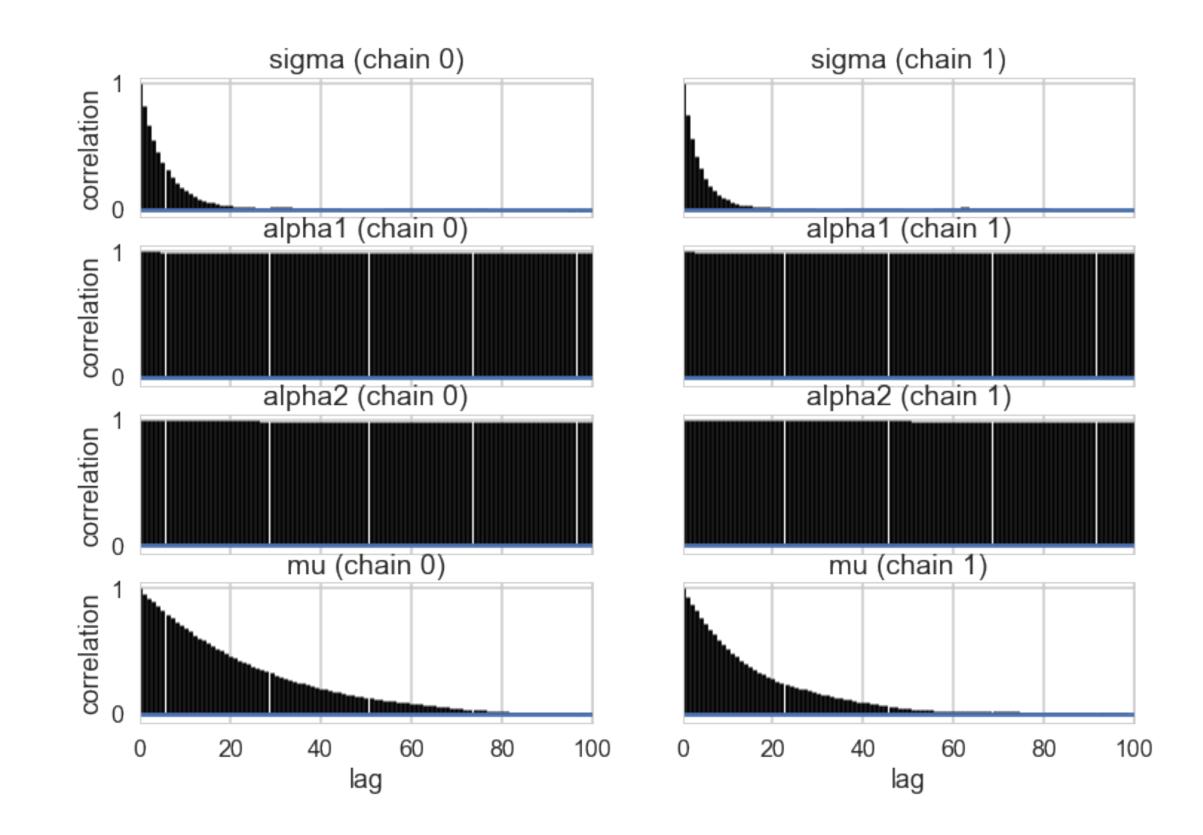
dataframe(traceni)

mu	alpha1	alpha2
-0.000115	-0.003153	0.003152
1.000000	0.002844	0.008293
0.002844	1.000000	-0.999938
0.008293	-0.999938	1.000000

```
>>pm.effective_n(traceni)
{ 'alpha1': 1.0,
 'alpha1 interval ': 1.0,
 'alpha2': 1.0,
 'alpha2 interval ': 1.0,
 'mu': 26411.0,
 'sigma': 39215.0,
 'sigma_log_': 39301.0}
 >>pm.gelman rubin(traceni)
 { 'alpha1': 1.7439881580327452,
  'alpha1_interval_': 1.7439881580160093,
  'alpha2': 1.7438626593529831,
  'alpha2 interval ': 1.7438626593368223,
  'mu': 0.99999710182062695,
```

```
'sigma': 1.0000248056117549,
```

```
'sigma_log_': 1.0000261752214563}
```

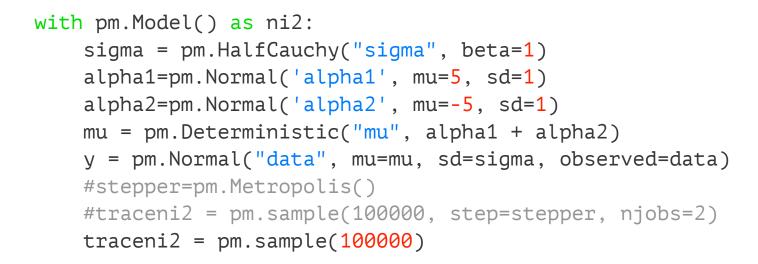



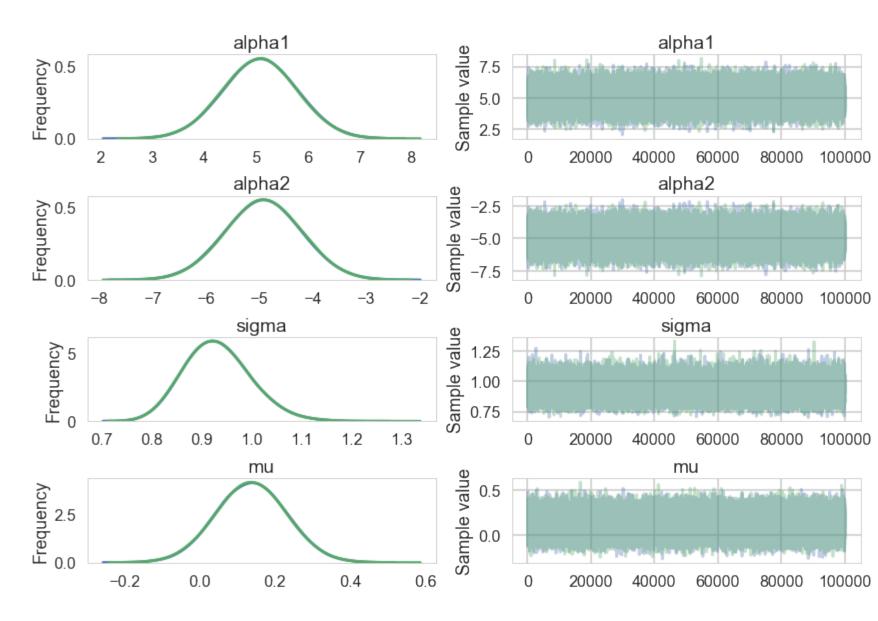
Is autocorrelation bad?

- depends on what you want to do
- this is true for n_{eff} in general
- does not matter much for means
- matters for credible intervals as we need tails

trying to fix

	alpha1	alpha2	sigma	mu
alpha1	1.000000	-0.991369	-0.003822	0.066316
alpha2	-0.991369	1.000000	0.003936	0.065067
sigma	-0.003822	0.003936	1.000000	0.000868
mu	0.066316	0.065067	0.000868	1.000000

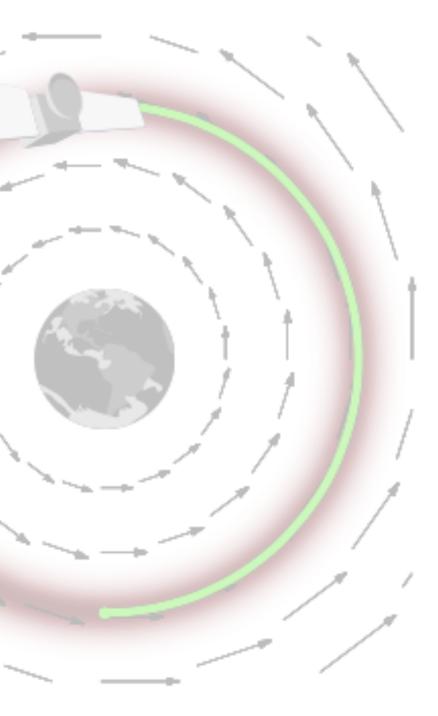


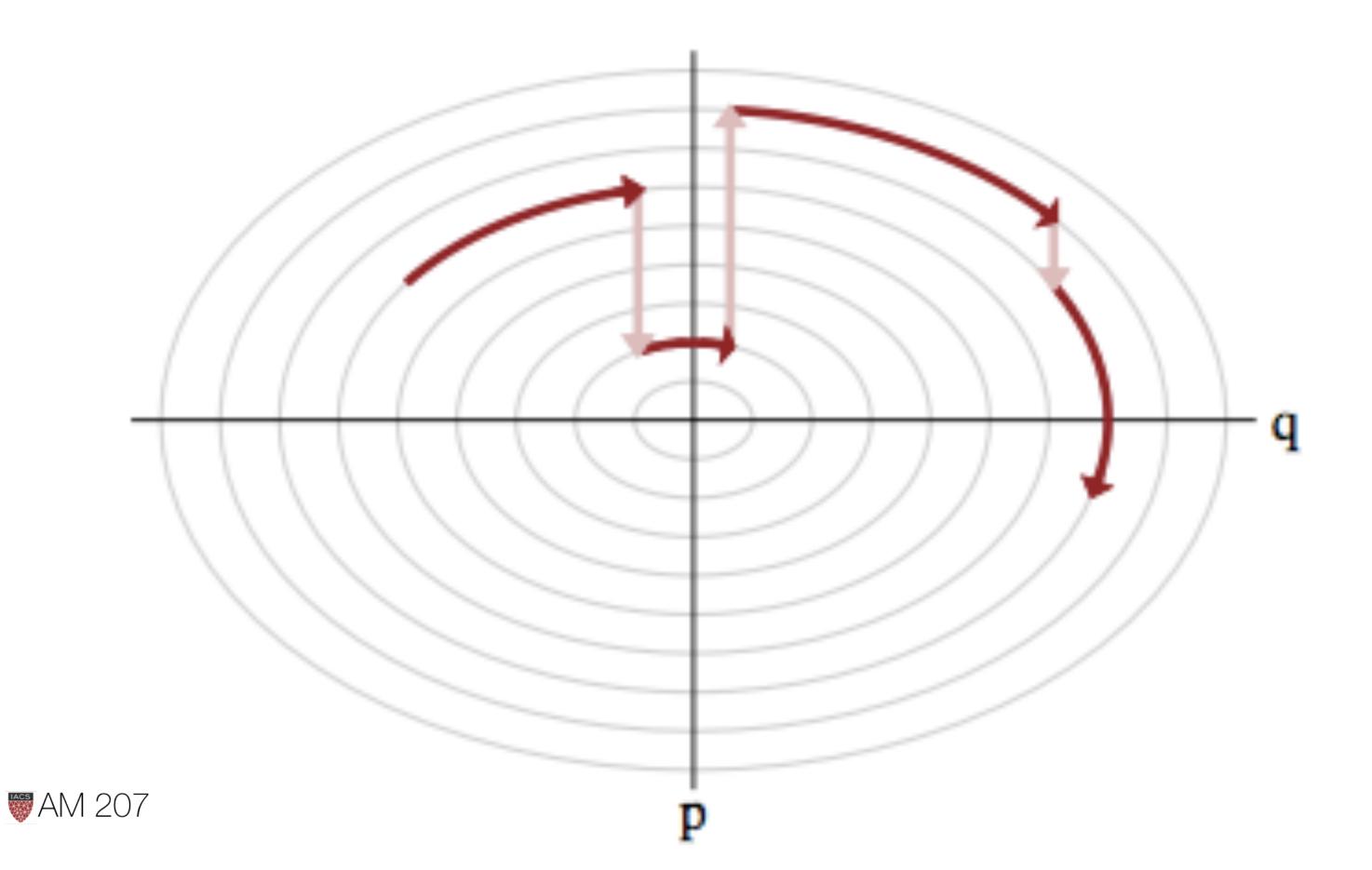


Thoughts on Diagnostics

- be paranoid, you only know you have not converged, not if you have
- what if you missed out an entire lobe? Thus multiple chains and multiple starting points.
- check posterior correlations, trace autocorrelation, effective n, the look of the trace, the acceptance rate
- check gewecke and gelman-rubin

HMC[/]





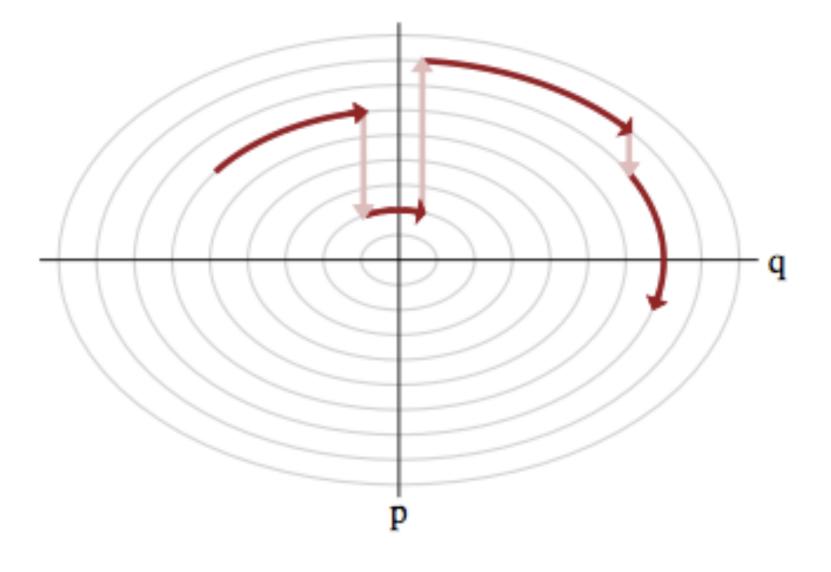
Recap of Hamiltonian Flow ideas

- start with p(q)
- augment using momentum to p(p,q)
- the momentum comes from a kinetic energy which looks something like $p^2/2m$
- write p(q) as $e^{-V(q)}$
- then $p(p,q) = e^{-H(p,q)} = e^{-K(p,q)}e^{-V(q)} = p(p|q)p(q)$

Basic Idealized Idea

- 1. Move on a level set of the Hamiltonian H(p,q). Pick up samples at will with acceptance probability 1. Why? Reversibility, Flow.
- 2. Fire thrusters, that is sample p, from kinetic energy distribution, to move to another level set. Why? Cover whole Typical set
- 3. Repeat

Momentum resampling



Draw p from a distribution that is determined by the distribution of momentum, i.e. $p \sim N(0, \sqrt{M})$ for example, and attempt to explore the level sets.

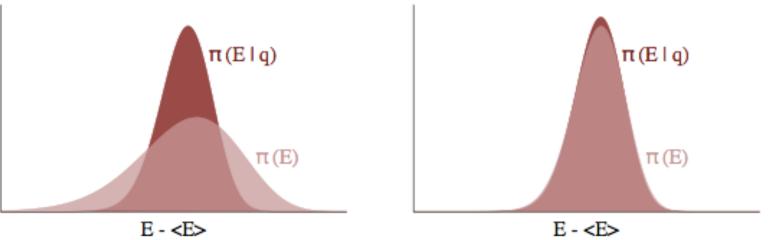
Firing the thruster moves us between level sets!

Resampling Efficiency

Let p(E|q) as the transition distribution of energies induced by a momentum resampling using p(p|q) = -log K(p,q) at a given position q.

If p(E|q) narrow compared to the marginal energy distribution p(E): random walk amongst level sets proceeds slowly.

If p(E|q) matches p(E): independent samples generated from the marginal energy distribution very efficiently.



Tuning: choice of Kinetic energy

- Set M^{-1} to the covariance of the target distribution: maximally de-correlate the target. Do in warmup (tune) phase.
- can see this by $p
 ightarrow p/\sqrt{M}$, Then $q
 ightarrow q\sqrt{M}$

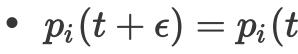
$$H=rac{1}{2}p^TM^{-1}p+rac{1}{2}q^T\Sigma^{-1}q$$
 becomes $H=rac{1}{2}ig(p)$

if $M^{-1} = \Sigma$

Thus de-correlate target. Generalize to arbitrary distributions.

 $p^{\prime T} p + q^{\prime T} q)$

Discretization problems



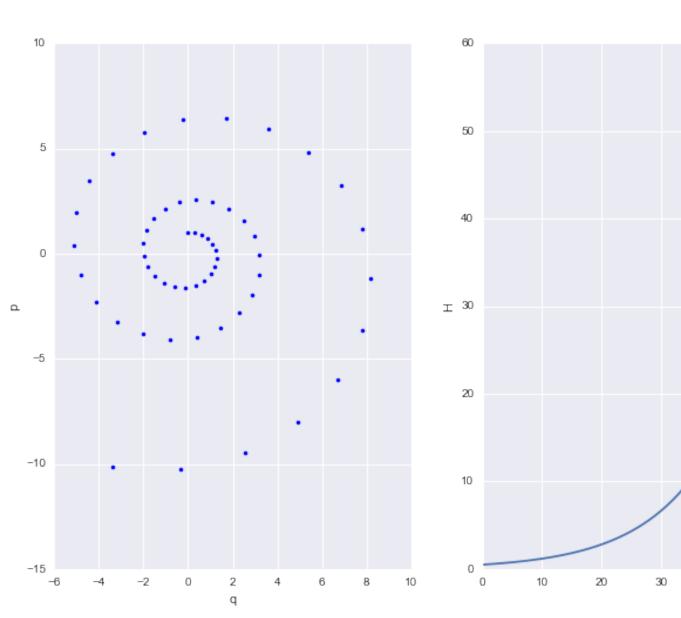
•
$$p_i(t+\epsilon) = p_i(t) - \epsilon \frac{\partial U}{\partial q_i}|_{q(t)}$$

• $q_i(t+\epsilon) = q_i(t) + \epsilon \frac{p_i(t)}{m_i}$

- off-diagonal terms of size ϵ makes volume not preserved
- leads to drift over time
- use "leapfrog" instead

50

60



Sympletic Leapfrog (why volume needs conservation 1)

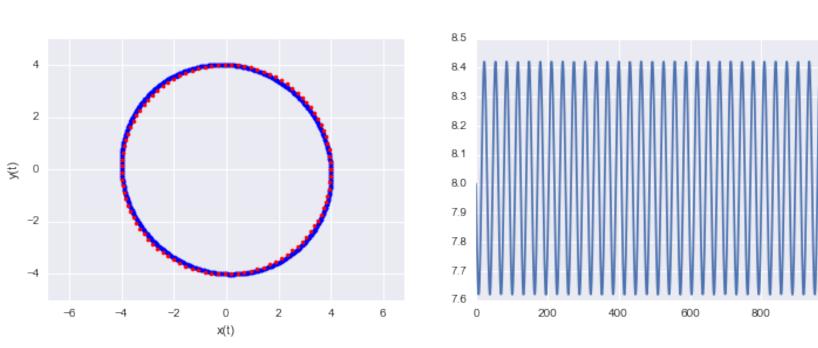
$$\bullet \ \ p_i(t+\frac{\epsilon}{2})=p_i(t)-$$

•
$$q_i(t+\epsilon) = q_i(t) + \epsilon^2$$

$$\bullet \ p_i(t+\epsilon) = p_i(t+rac{\epsilon}{2})$$

1000

- still error exists, oscillatory, so reversibility not achieved
- use superman transform. Works even when we are off level set.



- Only shear transforms allowed, will preserve volume.
 - $rac{\epsilon}{2}rac{\partial V}{\partial q_i}|_{q(t)}$
 - $p_i(t+rac{\epsilon}{2})$ m_i
 - $)-rac{\epsilon}{2}rac{\partial V}{\partial q_{i}}|_{q(t+\epsilon)}$

WE ARE MARGINALLY OFF THE LEVEL SETS!

So must consider: acceptance probability

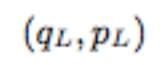
$$A = \min[1, rac{p(q', p')Q(q', p'|q, p)}{p(q, p)Q(q, p)|q', p')}$$

What should we choose as our proposal?

Superman choice

- tack on sign change $(q, p) \rightarrow (q_L, -p_L)$. Superman to the rescue!
- proposal now: $Q(q',p'|q,p)=\delta(q'-q_L)\delta(p'+p_L).$
- Acceptance:

$$A = \min[1, \frac{p(q_L, -p_L)\delta(q_L - q_L)\delta(-p_L + p_L)}{p(q, p)\delta(q - q)\delta(p - p)}]$$
(qo, -po)
(qo, -po)



 (q_0, p_0)

 $(q_L, -p_L)$

 $(q_L, -p_L)$

$A = \min[1, \exp(-U(q_L) + U(q) - K(p_L) + K(p)])$

$= \min |1, \exp(-H_L + H)|$

critical thing with HMC is that our **time evolution is always close** to being on a level set if we have no problems with our sympelctic integrator. So our A always closer to 1, and we have a very efficient sampler.

Second reason for Volume Conservation

From Neal's paper:

The significance of volume preservation for MCMC is that we need not account for any change in volume in the acceptance probability for Metropolis updates. If we proposed new states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute the determinant of the Jacobian matrix for the mapping the dynamics defines, which might well be infeasible.

Detailed Balance

- obvious for $i \neq j$, but for i = j, call it k:
- in limit of regions becoming smaller, H can be thought of as constant inside the region, and thus the canonical densities and transition probs become constant too:

$$egin{aligned} rac{V}{Z}exp(-H_{A_k})min[1,exp(-H_{B_k}+H_{A_k})] &= rac{V}{Z}exp(-H_{B_k})min_{A_k}\ ext{true} \end{aligned}$$

$n[1, exp(-H_{A_k} + H_{B_k})]$

HMC Algorithm (momentum reversal could be left out if not within a more complex sampling scheme)

- for i=1:N_samples
 - 1. Draw $p \sim N(0, M)$
 - 2. Set $q_c = q^{(i)}$ where the subscript c stands for current
 - 3. $p_c = p$
 - 4. Update momentum before going into LeapFrog stage: $p^* = p_c \frac{\epsilon * \nabla U(q_c)}{2}$
 - 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)
 - $\bullet \ \ q^* = q^* + \epsilon p$
 - if not the last step, $p = p \epsilon
 abla U(q)$
 - 6. Complete leapfrog: $p = p \frac{\epsilon \nabla U(q)}{2}$

HMC (contd)

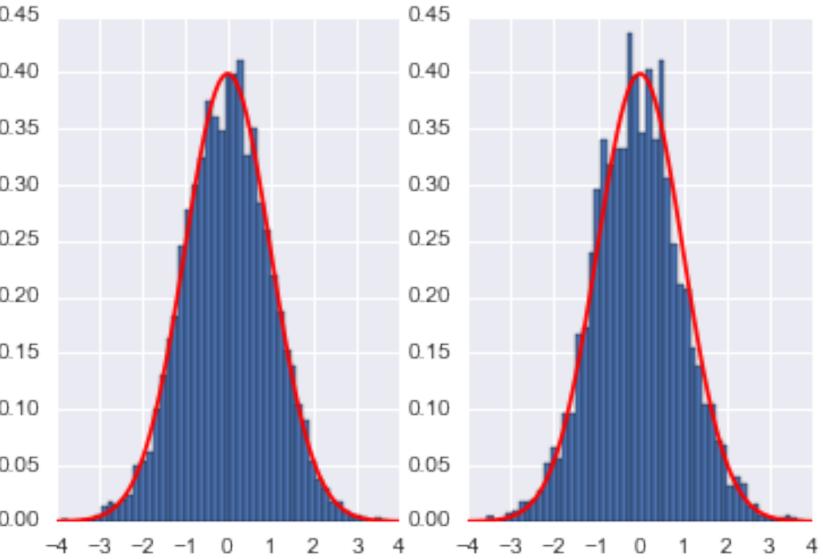
- for i=1:N_samples
 - 7. $p^* = -p$

• 8.
$$V_c = V(q_c), \ \ K_c = rac{p_c^ op M^{-1} p_c}{2}$$

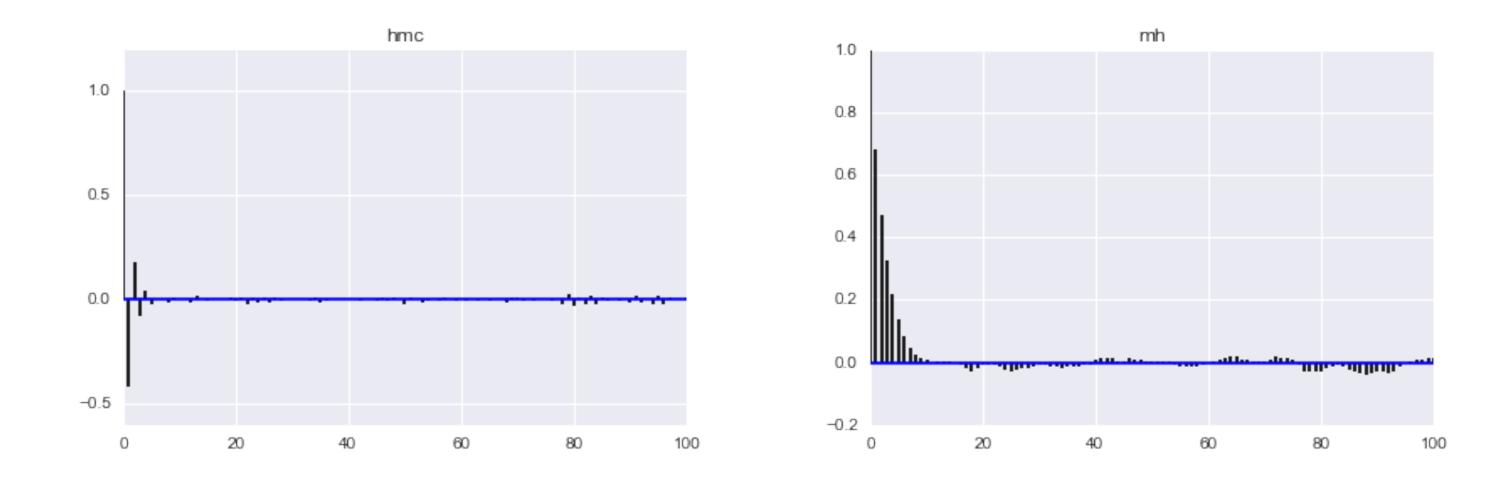
• 9.
$$V^* = V(q^*), \;\; K^* = rac{p^{ op *} M^{-1} p^*}{2}$$

- 10. $r \sim \mathrm{Unif}(0,1)$
- 11. if $r < e^{(U_c U^* + K_c K^*)}$
 - accept $q_i = q^*$
 - otherwise reject


```
def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
    current_q = q_0
    current_p = p_0
    H = np.zeros(N)
    qall = np.zeros(N)
    accept=0
                                                                                            0.45
    for j in range(N):
       q = current_q
        p = current_p
                                                                                            0.40
        #draw a new p
       p = np.random.normal(0,1)
        current_p=p
                                                                                            0.35
        # leap frog
       # Make a half step for momentum at the beginning
       p = p - epsilon*dUdq(q)/2.0
                                                                                            0.30
        # alternate full steps for position and momentum
        for i in range(L):
           q = q + epsilon*p
                                                                                            0.25
           if (i != L-1):
               p = p - epsilon*dUdq(q)
        #make a half step at the end
                                                                                            0.20
        p = p - epsilon*dUdq(q)/2.
        # negate the momentum
        p= -p;
                                                                                            0.15
        current_U = U(current_q)
        current_K = K(current_p)
        proposed_U = U(q)
        proposed_K = K(p)
                                                                                            0.10
        A=np.exp( current_U-proposed_U+current_K-proposed_K)
        # accept/reject
        if np.random.rand() < A:</pre>
                                                                                            0.05
           current_q = q
           qall[j]=q
           accept+=1
                                                                                            0.00
        else:
                                                                                                   -4
           qall[j] = current_q
        H[j] = U(current_q)+K(current_p)
    print("accept=",accept/np.double(N))
    return H, qall
```

Autocorrelation: HMC vs MH



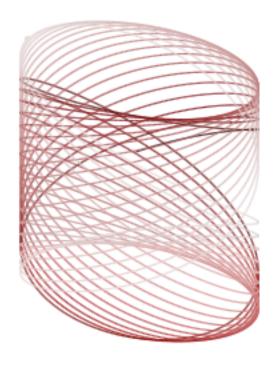
H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)
samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)

Tuning: integration time

- whats the best integration time?
- should we glide for a long time? then we wont get too may samples
- if our integration was exact we could glide for arbitrary short times
- but integration is not exact and will infact take us off the level set
- thus too many samples/too short time will get us back to MH

Dynamic Ergodicity

Because orbits fill in first, orbital average become "spatial" expectations

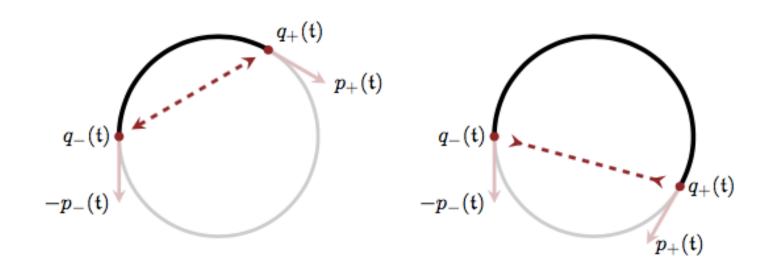


Tuning: L and ϵ

- find the point at which the orbital expectations converge to the spatial expectations...a sort of ergodicity
- L, number of iterations for which we run the Hamiltonian dynamics, and ϵ which is the (small) length of time each iteration is run.

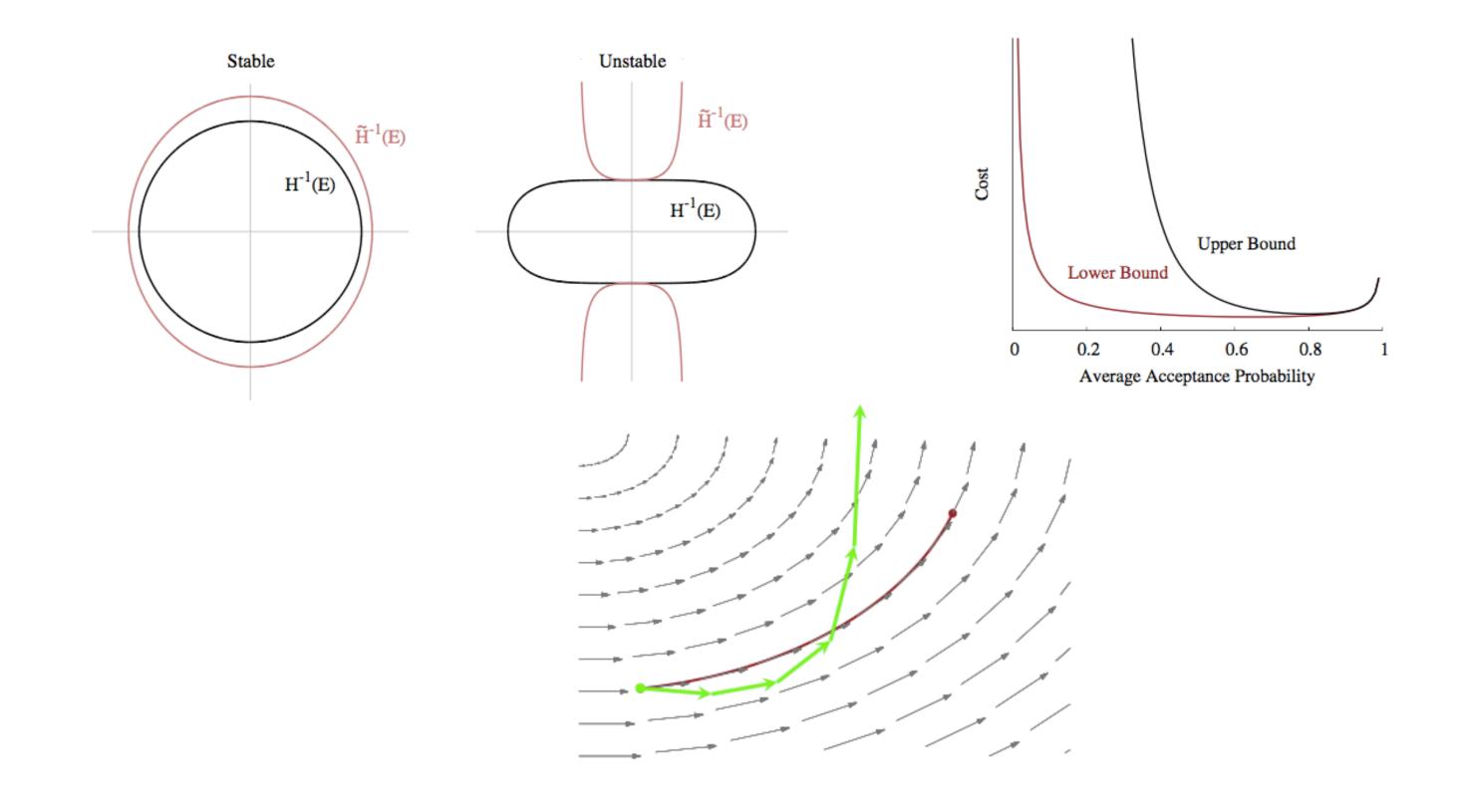
L tuning

- in HMC, start L = 100 increase if for fixed step size, autocorrelation is too much
- Tails correspond to much higher energies, larger level-set surfaces are larger
- fixed length explores a small portion of this set before a momentum resampling takes us off.
- better to set dynamically: NUTS termination criterion



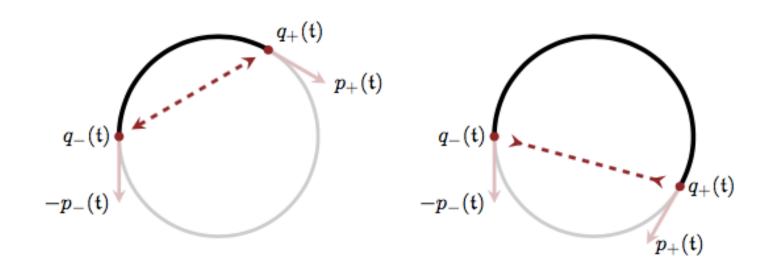
ϵ tuning

- if too small, accurate trajectories but too much time
- if too large, we will go off more and thus reject most of the time
- optimal ϵ is determined by the "shadow hamiltonian"
- want acceptance to be between 60 and 80 percent in most cases to have lower bounds of shadow and upper bounds of shadow close to each other

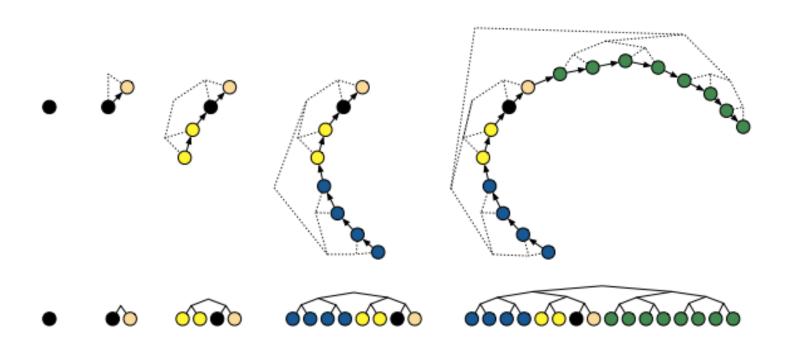


From HMC to HMC++

- one idea maybe to average over all points in orbit of length ${\cal L}$
- To autotune *L* it is better to sample from orbit rather than get last point only: dynamic ergodicity: time average is orbit average
- NUTS: sample trajectories containing initial point and then sample point from them with trajectory canonical weights
- need a criterion for when to stop doing this



NUTS in a nutshell



- termination criterion destroys detailed balance, must rebuild
- sample from trajectory not just endpoint
- sample backwards and forwards in time until u-turn
- choose a sample with boltzmann weights over the trajectory using multinomial sampling

Hierarchicals with NUTS

Normal-Normal Hierarchical Model

J independent experiments, experiment j estimating the parameter θ_i from n_i independent normally distributed data points, y_{ij} , each with known error variance σ^2 ; that is,

$$y_{ij}| heta_j\sim N(heta_j,\sigma^2),\,i=1,\ldots,n_j;j=1$$

Gelman 8-schools problem: estimated coaching effects \bar{y}_i to improve SAT scores for school j, with sampling variances, σ_j^2 .

$1,\ldots,J.$

Sample mean of each group j

$$ar{y_j} = rac{1}{n_j}\sum_{i=1}^{n_j}y_{ij}$$
 with sampling variance $\sigma_j^2 = \sigma^2/n_j.$

Likelihood for θ_j using suff-stats, \bar{y}_j :

$$ar{y_j}| heta_j \sim N(heta_j,\sigma_j^2).$$

Notation flexible in allowing a separate variance σ_j^2 for the mean of each group j. Appropriate when the variances differ for reasons other than number of data pts.

	Estimated	Standard error
	treatment	of effect
School	effect, y_j	estimate, σ_j
Α	28	15
в	8	10
\mathbf{C}	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
G	18	10
H	12	18

Centered Hierarchical Model

$$egin{aligned} \mu &\sim \mathcal{N}(0,5) \ au &\sim ext{Half-Cauchy}(0,5) \ heta_j &\sim \mathcal{N}(\mu, au) \ egin{aligned} eta_j &\sim \mathcal{N}(\mu, au) \ eta_j &\sim \mathcal{N}(heta_j,\sigma_j) \end{aligned}$$

with pm.Model() as schools1:

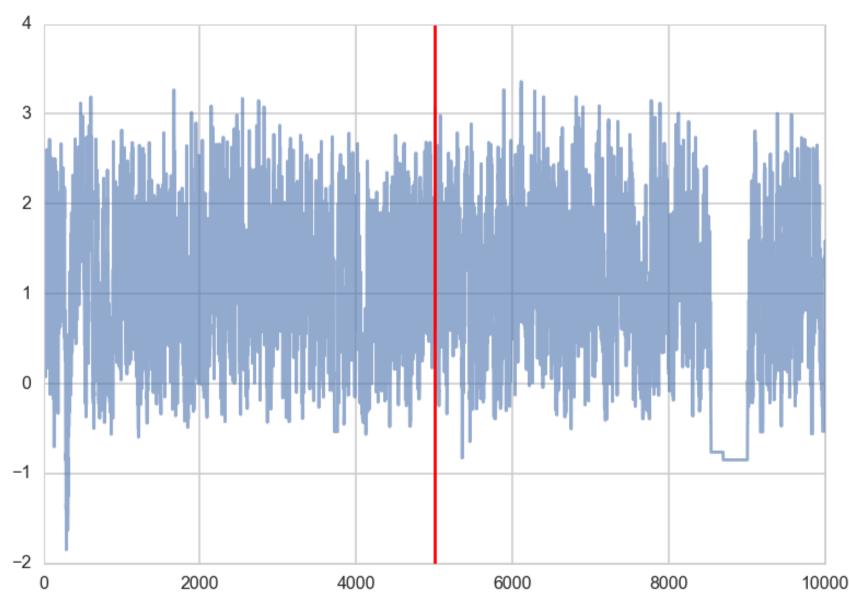
```
mu = pm.Normal('mu', 0, sd=5)
tau = pm.HalfCauchy('tau', beta=5)
theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)
```

```
with schools1:
   trace1 = pm.sample(5000, init=None, njobs=2, tune=500)
```

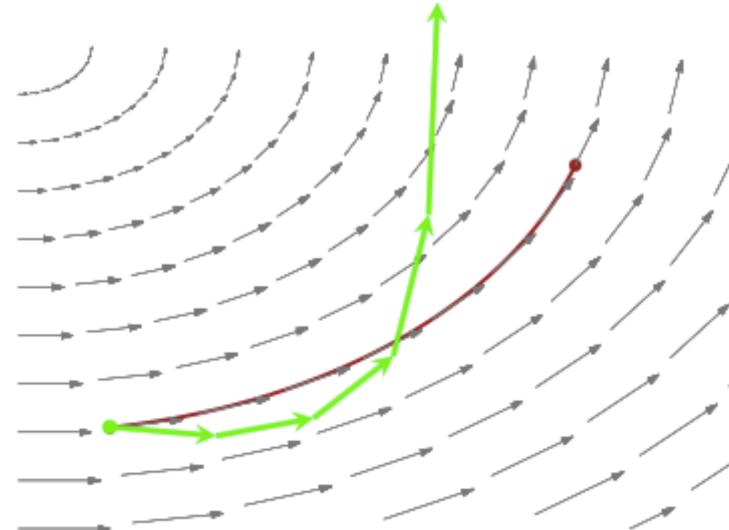

Small n_{eff} :



- stickys are actually trying to drive down value of trace
- we are in a region of high curvature

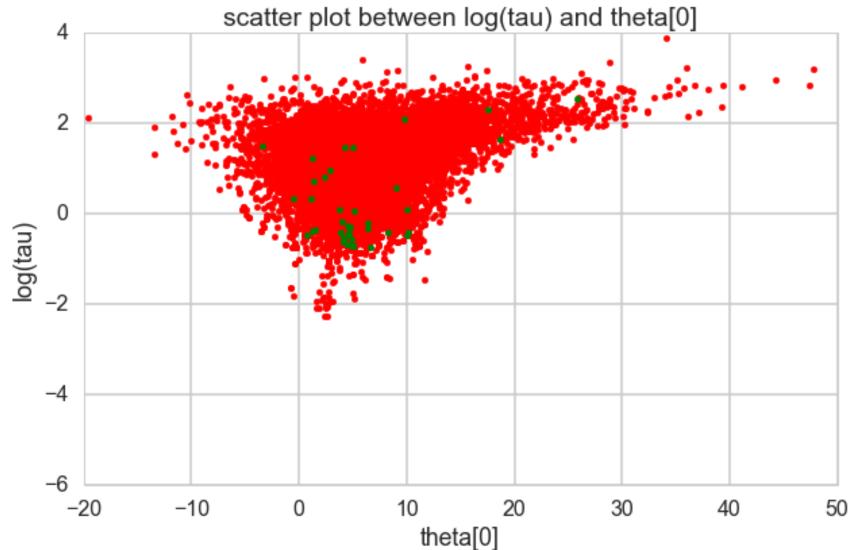


High Curvature Issues

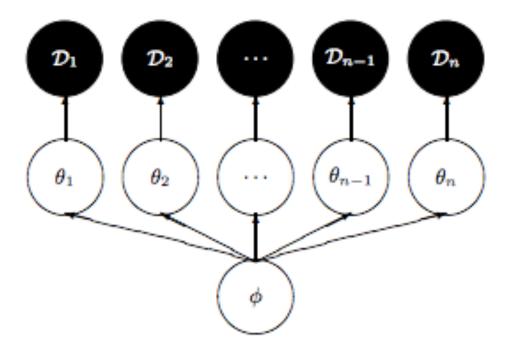


High Curvature Issues

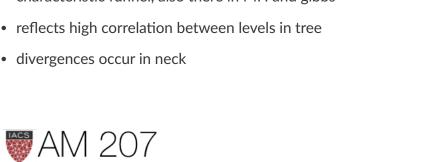
- symplectic integration diverges: good diagnostic. False positives from heuristic.
- sampler needs to have real small steps to not diverge, but then becomes sticky
- regions of high curvature often have high energy differences, causing trouble for microcanonical jump transitions.

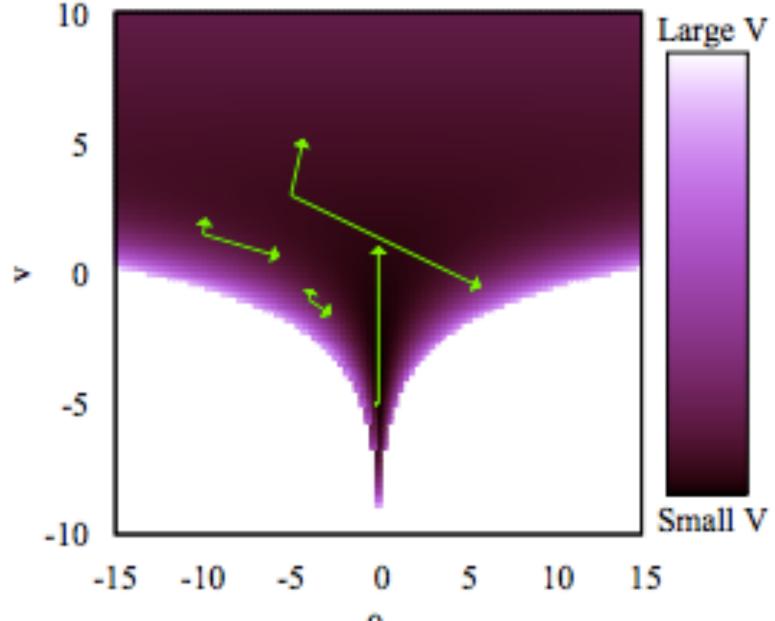


Hierarchical Models have high curvature



- characteristic funnel, also there in MH and gibbs
- reflects high correlation between levels in tree
- divergences occur in neck



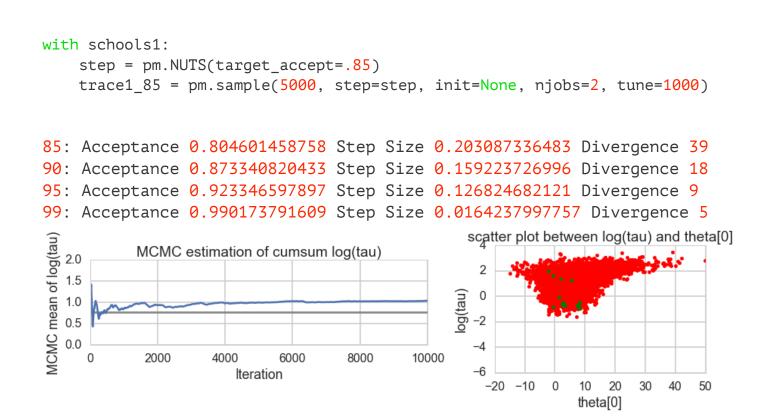


(100+1) Dimensional Funnel

θ,

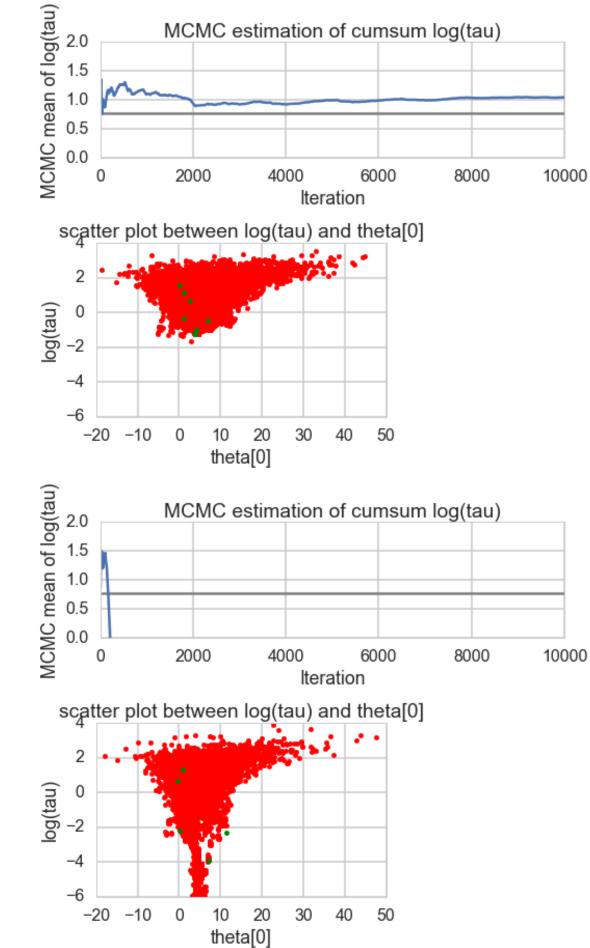
Step size effect

- lower step size ϵ better for symplectic integrators, especially in high curvature regions
- this allows for geometric ergodicity: we go everywhere.
- too small ϵ : return of the random walk.



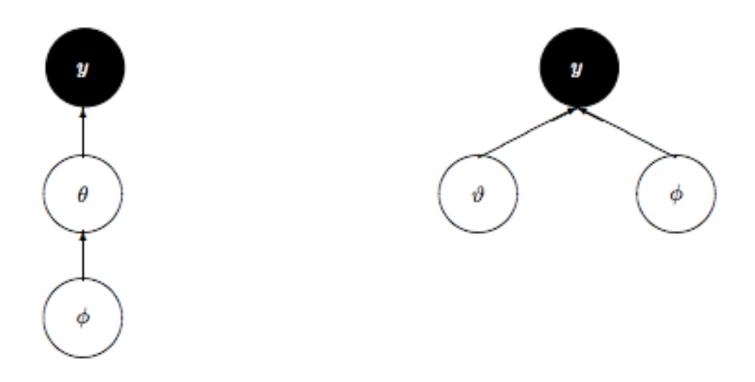
Changing step size

divergences persist. Too curved!



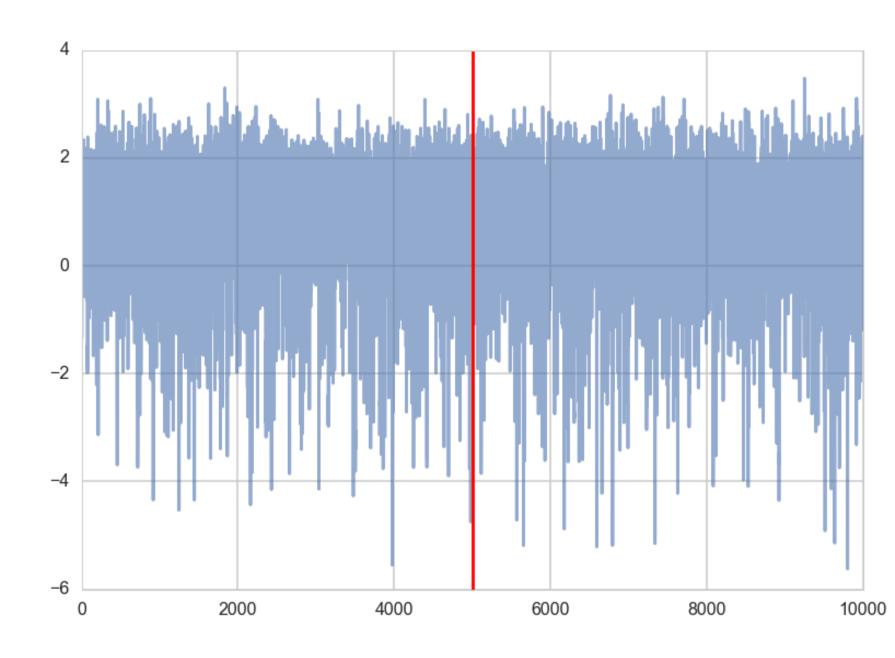
Non-centered model

- could change kinetic energy (riemannian HMC) to make mass matrix dependent upon position
- simpler: reparametrize to reduce levels in hierarchy

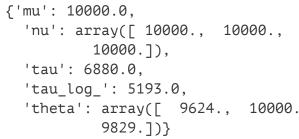


$$egin{aligned} \mu &\sim \mathcal{N}(0,5) \ au &\sim ext{Half-Cauchy}(0,5) \
u_j &\sim \mathcal{N}(0,1) \ heta_j &= \mu + au
u_j \ ar{y_j} &\sim \mathcal{N}(heta_j,\sigma_j) \end{aligned}$$

Factor dependency of θ on $\phi = \mu, \tau$ into a deterministic transformation between the layers, leaving the actively sampled variables uncorrelated.







divergent = trace2['diverging'] print('Number of Divergent %d' % divergent.nonzero()[0].size) divperc = divergent.nonzero()[0].size/len(trace2) print('Percentage of Divergent %.5f' % divperc)

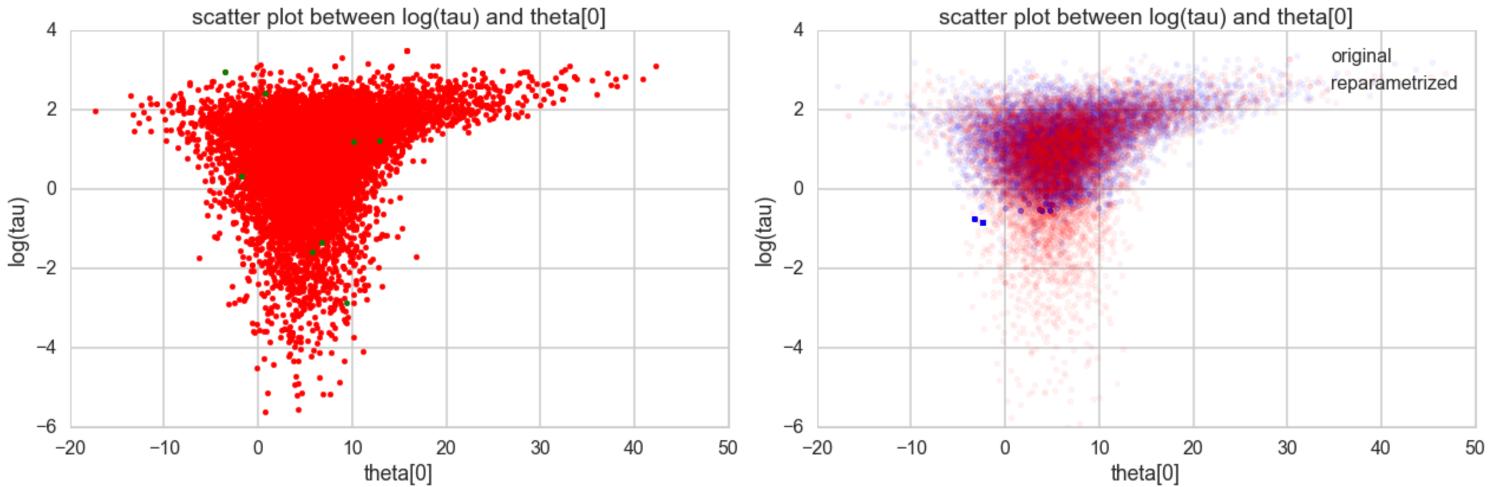
Number of Divergent 8 Percentage of Divergent 0.00160

 n_{eff} :

'nu': array([10000., 10000., 10000., 10000., 10000., 10000., 10000.,

'theta': array([9624., 10000., 10000., 10000., 10000., 10000., 10000.,

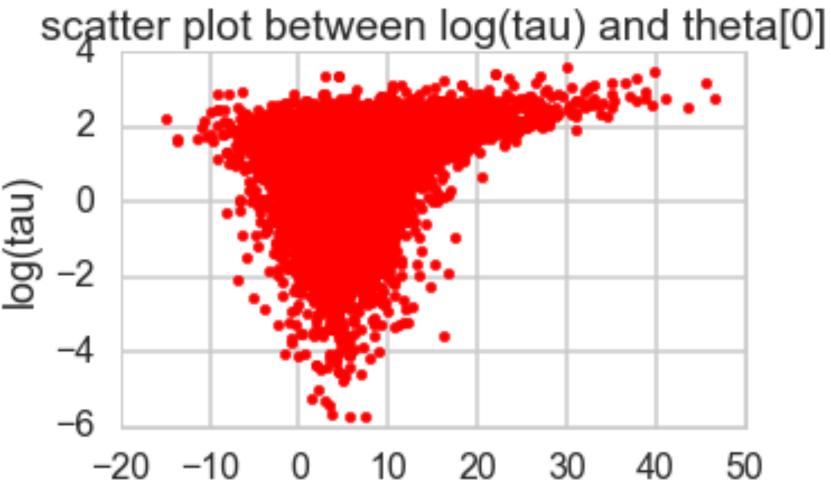
Divergences and true length of funnel



- Divergences infrequent, and all over. Mostly false positives.
- Lowering step sizes should make them go away

```
with schools2:
    step = pm.NUTS(target_accept=.95)
    trace2 95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)
```

- lower curvature ensures geometric ergodicity deep in our funnel
- see **Betancourt** for big discussion

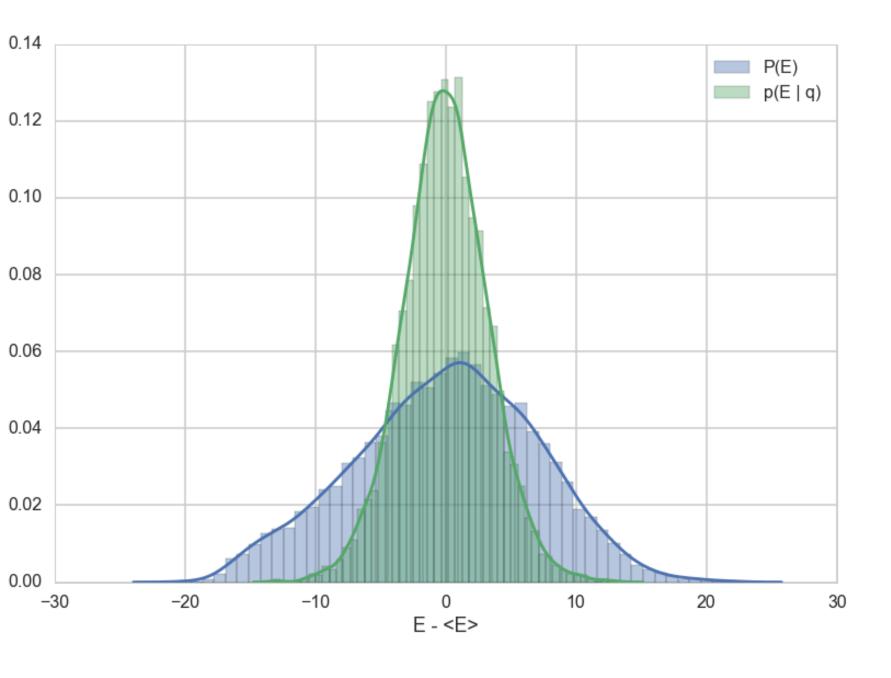


50 theta[0]

Momentum resampling Efficiency

```
def resample plot(t):
    plt.legend();
    plt.xlabel("E - <E>")
```

- trouble
- boost to.



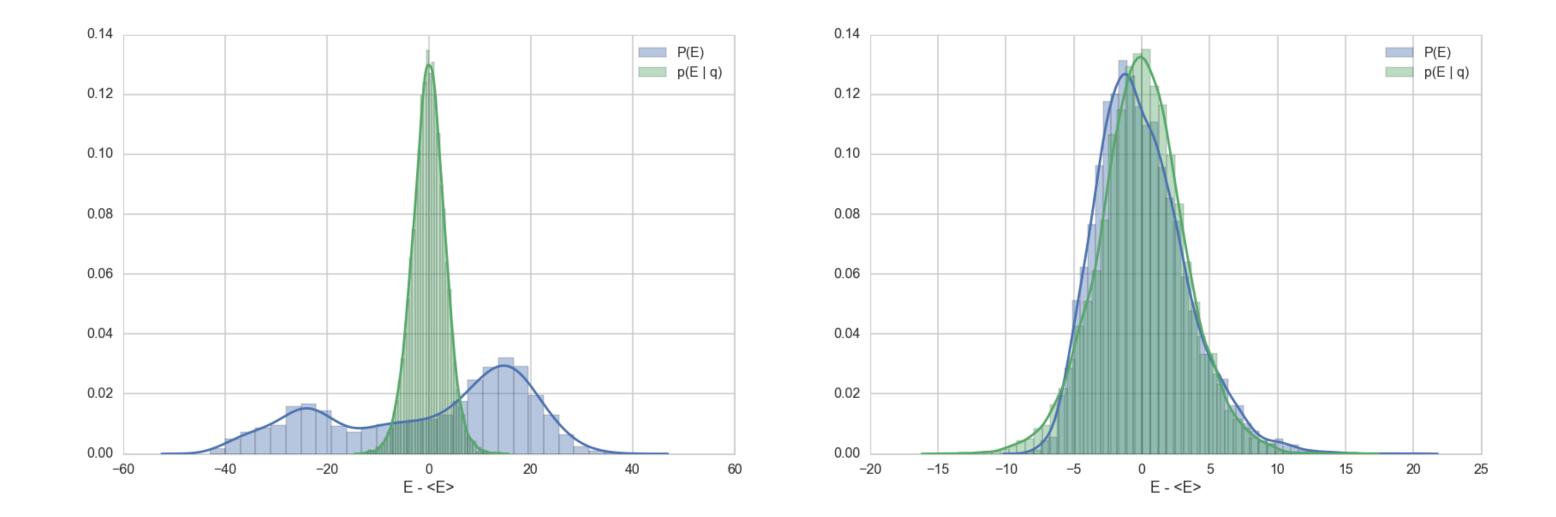
• match transition p(E|q) to marginal p(E)

sns.distplot(t['energy']-t['energy'].mean(), label="P(E)") sns.distplot(np.diff(t['energy']), label = "p(E | q)")

• if marginal has bigger tails we are in

 indicative here of big energy changes in high-curvature regions not possible to

centered, small step size vs Non-centered



On left, centered, your sampler is not exploring, so make sure what you are diagnosing. On right, nice match!

