
Lecture 18

Formal Tests, NUTS



Sampling with pymc3

Diagnos(cs





Model





from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
    stepper=pm.Metropolis()
    trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]



Model convergence

• traces white noisy

• diagnose autocorrela3on, check parameter 
correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m samples

• traceplots from different star7ng points, 
different chains

• formal tests: Gewecke, Gelman-Rubin, 
Effec7ve Sample Size



Imputa'on

>>>disasters_missing = np.array([ 4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])
>>>disasters_masked = np.ma.masked_values(disasters_missing, value=-999)

An array with mask set to True where data is missing.



with pm.Model() as missing_data_model:
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=len(disasters_masked))
    early_mean = pm.Exponential('early_mean', lam=1.)
    late_mean = pm.Exponential('late_mean', lam=1.)
    idx = np.arange(len(disasters_masked))
    rate = pm.Deterministic('rate', switch(switchpoint >= idx, early_mean, late_mean))
    disasters = pm.Poisson('disasters', rate, observed=disasters_masked)

with missing_data_model:
    stepper=pm.Metropolis()
    trace_missing = pm.sample(10000, step=stepper)

pm.summary(trace_missing, varnames=['disasters_missing'])

disasters_missing:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  2.189            1.825            0.078            [0.000, 6.000]
  0.950            0.980            0.028            [0.000, 3.000]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.000          1.000          2.000          3.000          6.000
  0.000          0.000          1.000          2.000          3.000



Gewecke: difference of means



with coaldis1:
    stepper=pm.Metropolis()
    tr = pm.sample(2000, step=stepper)

z = geweke(tr, intervals=15)

plt.scatter(*z['early_mean'].T)
plt.hlines([-1,1], 0, 1000, linestyles='dotted')
plt.xlim(0, 1000)



Gelman-Rubin

Mul$ple chains..compute within chain 
variance and compare to between chain 
variance



Use weighted average of  and  to es1mate variance of the 
sta1onary distribu1on pm.gelman_rubin(trace):

Overes&mates our variance, but unbiased under sta&onarity.

Ra#o of the es#mated distribu#on variance to asympto#c one:



ESS: Effec(ve Sample Size: a 
measure of correla(on

IIDness of draws decreases

pm.effective_n(trace)

{'early_mean': 16857.0,
 'early_mean_log_': 12004.0,
 'late_mean': 27344.0,
 'late_mean_log_': 27195.0,
 'switchpoint': 195.0}

(40000 samples)

 



Posterior Predic+ve Checks

 with coaldis1:
    sim = pm.sample_ppc(t2, samples=200)



Non-Iden(fiability and 
Correla(on

Simple Example: generate data from 
N(0,1). 

Then fit: 



Correla'on diagnos'c

sigma = pm.HalfCauchy("sigma", beta=1)
alpha1=pm.Uniform('alpha1', lower=-10**6, upper=10**6)
alpha2=pm.Uniform('alpha2', lower=-10**6, upper=10**6)
mu = pm.Deterministic("mu", alpha1 + alpha2)
y = pm.Normal("data", mu=mu, sd=sigma, observed=data)



>>>pm.effective_n(traceni)
{'alpha1': 1.0,
 'alpha1_interval_': 1.0,
 'alpha2': 1.0,
 'alpha2_interval_': 1.0,
 'mu': 26411.0,
 'sigma': 39215.0,
 'sigma_log_': 39301.0}
 >>>pm.gelman_rubin(traceni)
 {'alpha1': 1.7439881580327452,
  'alpha1_interval_': 1.7439881580160093,
  'alpha2': 1.7438626593529831,
  'alpha2_interval_': 1.7438626593368223,
  'mu': 0.99999710182062695,
  'sigma': 1.0000248056117549,
  'sigma_log_': 1.0000261752214563}





Is autocorrela,on bad?

• depends on what you want to do

• this is true for  in general

• does not ma5er much for means

• ma5ers for credible intervals as we need tails



trying to fix

with pm.Model() as ni2:
    sigma = pm.HalfCauchy("sigma", beta=1)
    alpha1=pm.Normal('alpha1', mu=5, sd=1)
    alpha2=pm.Normal('alpha2', mu=-5, sd=1)
    mu = pm.Deterministic("mu", alpha1 + alpha2)
    y = pm.Normal("data", mu=mu, sd=sigma, observed=data)
    #stepper=pm.Metropolis()
    #traceni2 = pm.sample(100000, step=stepper, njobs=2)
    traceni2 = pm.sample(100000)



Thoughts on Diagnos-cs

• be paranoid, you only know you have not converged, not if you 
have

• what if you missed out an en:re lobe? Thus mul:ple chains and 
mul:ple star:ng points.

• check posterior correla:ons, trace autocorrela:on, effec:ve , 
the look of the trace, the acceptance rate

• check gewecke and gelman-rubin



HMC





Recap of Hamiltonian Flow ideas

• start with 

• augment using momentum to 

• the momentum comes from a kine3c enegy which looks 
something like 

• write  as 

• then 



Basic Idealized Idea

1. Move on a level set of the Hamiltonian . Pick up samples 
at will with acceptance probability 1. Why? Reversibility, Flow.

2. Fire thrusters, that is sample , from kineAc energy distribuAon, 
to move to another level set. Why? Cover whole Typical set

3. Repeat



Momentum resampling

Draw  from a distribu/on that is 
determined by the distribu/on of 
momentum, i.e.  for 
example, and a9empt to explore the level 
sets.

Firing the thruster moves us between 
level sets!



Resampling Efficiency

Let  as the transi+on distribu+on of 
energies induced by a momentum 
resampling using  at 
a given posi+on .

If  narrow compared to the marginal 
energy distribu7on : random walk 
amongst level sets proceeds slowly.

If  matches : independent 
samples generated from the marginal 
energy distribu7on very efficiently.



Tuning: choice of Kine.c energy

• Set  to the covariance of the target distribu4on: maximally de-correlate 
the target. Do in warmup (tune) phase.

• can see this by , Then 

 becomes  

if 

Thus de-correlate target. Generalize to arbitrary distribu7ons.



Discre'za'on problems

•

•

• off-diagonal terms of size  makes 
volume not preserved

• leads to dri7 over 8me

• use "leapfrog" instead



Symple'c Leapfrog (why 
volume needs conserva'on 1)

• Only shear transforms allowed, will preserve volume.

•

•

•

• s7ll error exists, oscillatory, so reversibility not 
achieved

• use superman transform. Works even when we are 
off level set.



WE ARE MARGINALLY OFF THE LEVEL SETS!

So must consider: acceptance probability

What should we choose as our proposal?



Superman choice

• tack on sign change . 
Superman to the rescue!

• proposal now: 

• Acceptance: 



cri$cal thing with HMC is that our !me evolu!on is always close 
to being on a level set if we have no problems with our sympelc$c 
integrator. So our  always closer to 1, and we have a very efficient 
sampler. 



Second reason for Volume Conserva2on

From Neal's paper:

The significance of volume preserva4on for MCMC is that we need not 
account for any change in volume in the acceptance probability for 

Metropolis updates. If we proposed new states using some arbitrary, 
non-Hamiltonian, dynamics, we would need to compute the 

determinant of the Jacobian matrix for the mapping the dynamics 
defines, which might well be infeasible.



Detailed Balance

• obvious for , but for , call it k:

• in limit of regions becoming smaller, H can be thought of as 
constant inside the region, and thus the canonical densi9es and 
transi9on probs become constant too:

 

true



HMC Algorithm (momentum reversal could be le8 out if 
not within a more complex sampling scheme)

• for i=1:N_samples

• 1. Draw 

• 2. Set  where the subscript  stands for current

• 3. 

• 4. Update momentum before going into LeapFrog stage:  

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step, 

• 6. Complete leapfrog: 



HMC (contd)

• for i=1:N_samples

• 7. 

• 8. 

• 9. 

• 10. 

• 11. if  

• accept 

• otherwise reject



def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
    current_q = q_0
    current_p = p_0
    H = np.zeros(N)
    qall = np.zeros(N)
    accept=0
    for j in range(N):
        q = current_q
        p = current_p
        #draw a new p
        p = np.random.normal(0,1)
        current_p=p
        # leap frog
        # Make a half step for momentum at the beginning
        p = p - epsilon*dUdq(q)/2.0
        # alternate full steps for position and momentum
        for i in range(L):
            q = q + epsilon*p
            if (i != L-1):
                p = p - epsilon*dUdq(q)
        #make a half step at the end
        p = p - epsilon*dUdq(q)/2.
        # negate the momentum
        p= -p;
        current_U = U(current_q)
        current_K = K(current_p)
        proposed_U = U(q)
        proposed_K = K(p)
        A=np.exp( current_U-proposed_U+current_K-proposed_K)
        # accept/reject
        if np.random.rand() < A:
            current_q = q
            qall[j]=q
            accept+=1
        else:
            qall[j] = current_q
        H[j] = U(current_q)+K(current_p)
    print("accept=",accept/np.double(N))
    return H, qall



Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)



Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may 
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH



Dynamic Ergodicity

Because orbits fill in first, orbital average become "spa6al" expecta6ons



Tuning:  and 

• find the point at which the orbital expecta3ons converge to the 
spa3al expecta3ons..a sort of ergodicity

• , number of itera3ons for which we run the Hamiltonian 
dynamics, and  which is the (small) length of 3me each itera3on 
is run.



L tuning

• in HMC, start  increase if for 
fixed step size, autocorrela8on is too 
much

• Tails correspond to much higher energies, 
larger level-set surfaces are larger

• fixed length explores a small por8on of 
this set before a momentum resampling 
takes us off.

• beCer to set dynamically: NUTS 
termina8on criterion



 tuning

• if too small, accurate trajectories but too much 3me

• if too large, we will go off more and thus reject most of the 3me

• op3mal  is determined by the "shadow hamiltonian"

• want acceptance to be between 60 and 80 percent in most cases 
to have lower bounds of shadow and upper bounds of shadow 
close to each other





From HMC to HMC++

• one idea maybe to average over all points 
in orbit of length 

• To autotune  it is be-er to sample from 
orbit rather than get last point only: 
dynamic ergodicity: 9me average is orbit 
average

• NUTS: sample trajectories containing 
ini9al point and then sample point from 
them with trajectory canonical weights

• need a criterion for when to stop doing 
this



NUTS in a nutshell

• termina)on criterion destroys detailed 
balance, must rebuild

• sample from trajectory not just 
endpoint

• sample backwards and forwards in )me 
un)l u-turn

• choose a sample with boltzmann 
weights over the trajectory using 
mul)nomial sampling



Hierarchicals with NUTS



Normal-Normal Hierarchical Model

 independent experiments, experiment  es-ma-ng the 
parameter  from  independent normally distributed data points, 

, each with known error variance ; that is,

Gelman 8-schools problem: es2mated coaching effects  to 
improve SAT scores for school , with sampling variances, .



Sample mean of each group  

 with sampling variance 

.

Likelihood for  using suff-stats, :

Nota%on flexible in allowing a separate 
variance  for the mean of each group . 
Appropriate when the variances differ for 
reasons other than number of data pts.



Centered Hierarchical Model

with pm.Model() as schools1:

    mu = pm.Normal('mu', 0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)

with schools1:
    trace1 = pm.sample(5000, init=None, njobs=2, tune=500)



Small :

{'mu': 101.0,
  'tau': 273.0,
  'tau_log_': 77.0,
  'theta': array([ 169.,  199.,  236.,  193.,  211.,  231.,  139.,  204.])})

• s#ckys are actually trying to drive down 
value of trace

• we are in a region of high curvature



High Curvature Issues



High Curvature Issues

• symplec)c integra)on diverges: good 
diagnos)c. False posi)ves from 
heuris)c.

• sampler needs to have real small steps 
to not diverge, but then becomes s)cky

• regions of high curvature o=en have 
high energy differences, causing trouble 
for microcanonical jump transi)ons.



Hierarchical Models have high 
curvature

• characteris*c funnel, also there in MH and gibbs

• reflects high correla*on between levels in tree

• divergences occur in neck



Step size effect

• lower step size  be.er for symplec3c integrators, especially in 
high curvature regions

• this allows for geometric ergodicity: we go everywhere.

• too small : return of the random walk.



Changing step size

with schools1:
    step = pm.NUTS(target_accept=.85)
    trace1_85 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

85: Acceptance 0.804601458758 Step Size 0.203087336483 Divergence 39
90: Acceptance 0.873340820433 Step Size 0.159223726996 Divergence 18
95: Acceptance 0.923346597897 Step Size 0.126824682121 Divergence 9
99: Acceptance 0.990173791609 Step Size 0.0164237997757 Divergence 5

__

divergences persist. Too curved!



Non-centered model

• could change kine/c energy (riemannian HMC) to make mass matrix dependent upon posi/on

• simpler: reparametrize to reduce levels in hierarchy



Factor dependency of  on  into a 
determinis1c transforma1on between the 
layers, leaving the ac1vely sampled 
variables uncorrelated.

with pm.Model() as schools2:
    mu = pm.Normal('mu', mu=0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    nu = pm.Normal('nu', mu=0, sd=1, shape=J)
    theta = pm.Deterministic('theta', mu + tau * nu)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)
    trace2 = pm.sample(5000, init=None, njobs=2, tune=500)



:

{'mu': 10000.0,
  'nu': array([ 10000.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
          10000.]),
  'tau': 6880.0,
  'tau_log_': 5193.0,
  'theta': array([  9624.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
           9829.])}

divergent = trace2['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(trace2)
print('Percentage of Divergent %.5f' % divperc)

Number of Divergent 8
Percentage of Divergent 0.00160



Divergences and true length of funnel



• Divergences infrequent, and all over. 
Mostly false posi9ves.

• Lowering step sizes should make them 
go away

with schools2:
    step = pm.NUTS(target_accept=.95)
    trace2_95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

• lower curvature ensures geometric 
ergodicity deep in our funnel

• see Betancourt for big discussion

http://mc-stan.org/documentation/case-studies/divergences_and_bias.html


Momentum resampling 
Efficiency

• match transi,on  to marginal 

def resample_plot(t):
    sns.distplot(t['energy']-t['energy'].mean(), label="P(E)")
    sns.distplot(np.diff(t['energy']), label = "p(E | q)")
    plt.legend();
    plt.xlabel("E - <E>")

• if marginal has bigger tails we are in 
trouble

• indica5ve here of big energy changes in 
high-curvature regions not possible to 
boost to.



centered, small step size vs Non-centered

On le&, centered, your sampler is not exploring, so make sure what you are diagnosing. On right, nice match!


