
Lecture 18

HMC and Formal Tests



Jacobian

(from h(ps://www.projectrhea.org/rhea/index.php/Jacobian)



ADVERT



HMC/NUTS in pymc3

def clike2(value):
    x = value[0]
    y = value[1]
    val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
    return (val)

with pm.Model() as model:
    banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
    start = pm.find_MAP()
    stepper=pm.Metropolis()
    trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
    stepper_nuts=pm.NUTS()
    trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])



HMC



Recap of Hamiltonian Flow ideas

• start with 

• augment using momentum to 

• the momentum comes from a kine3c enegy which looks 
something like 

• write  as 

• then 



Canonical distribu/on

and thus: 



Phase Space level sets: 
Microcanonical Distribu6on

Typical Set decomposes into level sets of 
constant probability(energy)

The energy Hamiltonian 

with  constants (constant energies) for 
each level-set foliate and where the poten&al 
energy  replaces the 
energy term we had earlier in simulated 
annealing.



Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical 
distribu1on and a marginal energy distribu0on:

where  indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the 
typical set.



Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up 
the "glide" (over a level set).

Time independence: , 

.



Reversibility

 from  to a "later" +me . Mapping is 1-1, 
inverse . This can be obtained by simply nega+ng +me:



Superman transform

If we then transform , we have the old equa4ons back:

To reverse , flip the momentum, run Hamiltonian equa5ons un5l you get back 
to the original posi5on and momentum in phase space at original 5me t, then flip 
the momentum again so it is poin5ng in the right direc5on.



Volume in phase space is conserved

Jacobian:

As a result of this, the momenta we augment our distribu5on with 
must be dual to our pdf's parameters, transforming in the opposite 
way so that phase space volumes are invariant.



Basic Idea

1. Move on a level set of the Hamiltonian . Pick up samples 
at will with acceptance probability 1

2. Fire thrusters, that is sample , from kine>c energy distribu>on, 
to move to another level set

3. Repeat



More Problems arise

• discre(za(on to solve differen(al equa(ons can lead to infini(es. 
Thus the need for symplec(city

• lack of reversibility even with symplec(city (we are marginally off the 
level set)

• this means that the acceptance probability with no longer be 1

• how long should we go?

• whats a good kine(c energy?



Discre'za'on problems

•

•

• off-diagonal terms of size  makes 
volume not preserved

• leads to dri7 over 8me

• use "leapfrog" instead







Symple'c Leapfrog

• Only shear transforms allowed, will preserve 
volume.

•

•

•

• s7ll error exists, oscillatory, so reversibility not 
achieved

• use superman transform. Works even when we 
are off level set.





Acceptance probability

What should we choose as our proposal?



• might choose 

• but small symplec2c errors means this is only forward in 2me



Superman choice

• tack on sign change . 
Superman to the rescue!

• proposal now: 

• Acceptance: 





cri$cal thing with HMC is that our !me evolu!on is always close 
to being on a level set if we have no problems with our sympelc$c 
integrator. So our  always closer to 1, and we have a very efficient 
sampler. Op$mal acceptance can be shown: 65% roughly.



From Neal's paper:

The significance of volume preserva4on for MCMC is that we need not 
account for any change in volume in the acceptance probability for 

Metropolis updates. If we proposed new states using some arbitrary, 
non-Hamiltonian, dynamics, we would need to compute the 

determinant of the Jacobian matrix for the mapping the dynamics 
defines, which might well be infeasible.



Sta$onarity

• want canonical distribu0on as sta0onary distribu0on

• par00on phase space into small regions  each with small volume V. Let the L 
leapfrog step image of  be 

• Detailed Balance: 

•  is the condi0onal probability of proposing and then accep0ng a move to 
region X if the current state is in region Y .

• Due to the reversibility of the leapfrog steps, the  will also par00on the space, and 
since the leapfrog steps preserve volume (as does nega0on), each  will also have 
volume V. 



Detailed Balance

• obvious for , but for , call it k:

• in limit of regions becoming smaller, H can be thought of as 
constant inside the region, and thus the canonical densi9es and 
transi9on probs become constant too:

 

true



Sta$onarity Proof

The probability of the next state being in :



Ergodicity

• as long as we have no cycles we are good, the hamiltonian flow with 
momentum resampling will ensure ergodicity

• but if  (for oscillator) can get into trouble

• near ergodicty can lead to a bad sampler

• having chosen one, choose the other from a fairly small interval to fix

• in prac>ce not a big problem

• dynamic ergodicity important for sampling efficiency



HMC Algorithm (momentum reversal could be le8 out if 
not within a more complex sampling scheme)

• for i=1:N_samples

• 1. Draw 

• 2. Set  where the subscript  stands for current

• 3. 

• 4. Update momentum before going into LeapFrog stage:  

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step, 

• 6. Complete leapfrog: 



HMC (contd)

• for i=1:N_samples

• 7. 

• 8. 

• 9. 

• 10. 

• 11. if  

• accept 

• otherwise reject



def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
    current_q = q_0
    current_p = p_0
    H = np.zeros(N)
    qall = np.zeros(N)
    accept=0
    for j in range(N):
        q = current_q
        p = current_p
        #draw a new p
        p = np.random.normal(0,1)
        current_p=p
        # leap frog
        # Make a half step for momentum at the beginning
        p = p - epsilon*dUdq(q)/2.0
        # alternate full steps for position and momentum
        for i in range(L):
            q = q + epsilon*p
            if (i != L-1):
                p = p - epsilon*dUdq(q)
        #make a half step at the end
        p = p - epsilon*dUdq(q)/2.
        # negate the momentum
        p= -p;
        current_U = U(current_q)
        current_K = K(current_p)
        proposed_U = U(q)
        proposed_K = K(p)
        A=np.exp( current_U-proposed_U+current_K-proposed_K)
        # accept/reject
        if np.random.rand() < A:
            current_q = q
            qall[j]=q
            accept+=1
        else:
            qall[j] = current_q
        H[j] = U(current_q)+K(current_p)
    print("accept=",accept/np.double(N))
    return H, qall



Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)



Momentum resampling

Draw  from a distribu/on that is 
determined by the distribu/on of 
momentum, i.e.  for 
example, and a9empt to explore the level 
sets.

Firing the thruster moves us between 
level sets!



Resampling Efficiency

Let  as the transi+on distribu+on of 
energies induced by a momentum 
resampling using  at 
a given posi+on .

If  narrow compared to the marginal 
energy distribu7on : random walk 
amongst level sets proceeds slowly.

If  matches : independent 
samples generated from the marginal 
energy distribu7on very efficiently.



Tuning: choice of Kine.c energy

• thus momenta are dual, can use covariance as inverse mass matrix

• Ideal kine6c energy: microcanonical explora6on easy and uniform, marginal 
explora6on matched by the transi6on distrib.

• In prac6ce we o?en use 

• Set  to the covariance of the target distribu6on: maximally de-correlate 
the target. Do in warmup (tune) phase.

• can see this by , Then 



See this for Gaussian:

On transforma+on

 if 

Thus de-correlate target.

Generalize to arbitrary distribu1ons.



Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may 
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH



Tuning: integra,on ,me

• find the point at which the orbital expecta3ons converge to the 
spa3al expecta3ons..a sort of ergodicity

• , number of itera3ons for which we run the Hamiltonian 
dynamics, and  which is the (small) length of 3me each itera3on 
is run.

• generally sta3c not good, under-samples tails (high-energy 
micro-canonicals). Es3mate dynamically: NUTS (pymc3 and Stan)



L tuning

• in HMC, start  increase if for fixed step size, 
autocorrela8on is too much

• Tails correspond to much higher energies, larger level-set 
surfaces are larger

• fixed length explores a small por8on of this set before a 
momentum resampling takes us off.

• beCer to set dynamically: NUTS termina8on criterion





 tuning

• if too small, accurate trajectories but too much 3me

• if too large, we will go off more and thus reject most of the 3me

• op3mal  is determined by the "shadow hamiltonian"

• want acceptance to be between 60 and 80 percent in most cases 
to have lower bounds of shadow and upper bounds of shadow 
close to each other





From HMC to HMC++

• one idea maybe to average over all points 
in orbit of length 

• To autotune  it is be-er to sample from 
orbit rather than get last point only: 
dynamic ergodicity: 9me average is orbit 
average

• NUTS: sample trajectories containing 
ini9al point and then sample point from 
them with trajectory canonical weights

• need a criterion for when to stop doing 
this



NUTS in a nutshell

• termina)on criterion destroys detailed 
balance, must rebuild

• sample from trajectory not just 
endpoint

• sample backwards and forwards in )me 
un)l u-turn

• choose a sample with boltzmann 
weights over the trajectory using 
mul)nomial or slice sampling



Tumors in pymc3 with NUTS

with Model() as tumor_model:
    # Uniform priors on the mean and variance of the Beta distributions
    mu = Uniform("mu",0.00001,1.)
    nu = Uniform("nu",0.00001,1.)
    # Calculate hyperparameters alpha and beta as a function of mu and nu
    alpha = pm.Deterministic('alpha', mu/(nu*nu))
    beta = pm.Deterministic('beta', (1.-mu)/(nu*nu))
    # Priors for each theta
    thetas = Beta('theta', alpha, beta, shape=N)
    # Data likelihood
    obs_deaths = Binomial('obs_deaths', n=tumorn, p=thetas, observed=tumory)

with tumor_model:
    # Use ADVI for initialization
    mu, sds, elbo = pm.variational.advi(n=100000)
    step = pm.NUTS(scaling=tumor_model.dict_to_array(sds)**2,
                   is_cov=True)
    tumor_trace = pm.sample(5000, step, start=mu)





Sampling with pymc3

Diagnos(cs





Model



from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
    stepper=pm.Metropolis()
    trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]



>>>coaldis1.vars #stochastics
[early_mean_log_, late_mean_log_, switchpoint]
>>>coaldis1.deterministics #deterministics
[early_mean, late_mean]
>>>coaldis1.observed_RVs
[disasters]
>>>ed=pm.Exponential.dist(1)
<class 'pymc3.distributions.continuous.Exponential'>
>>>ed.random(size=10)
array([ 1.18512233,  2.45533355,  0.04187961,  3.32967837,  0.0268889 ,
        0.29723148,  1.30670324,  0.23335826,  0.56203427,  0.15627659])
>>>type(switchpoint), type(early_mean)
(pymc3.model.FreeRV, pymc3.model.TransformedRV)
>>>switchpoint.logp({'switchpoint':55,
    'early_mean_log_':1, 'late_mean_log_':1})
array(-4.718498871295094)



Model convergence

• traces white noisy

• diagnose autocorrela3on, check parameter 
correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m samples

• traceplots from different star7ng points, 
different chains

• formal tests: Gewecke, Gelman-Rubin, 
Effec7ve Sample Size



Gewecke: difference of means



with coaldis1:
    stepper=pm.Metropolis()
    tr = pm.sample(2000, step=stepper)

z = geweke(tr, intervals=15)

plt.scatter(*z['early_mean'].T)
plt.hlines([-1,1], 0, 1000, linestyles='dotted')
plt.xlim(0, 1000)



Gelman-Rubin

Mul$ple chains..compute within chain 
variance and compare to between chain 
variance



Use weighted average of  and  to es1mate variance of the 
sta1onary distribu1on pm.gelman_rubin(trace):

Overes&mates our variance, but unbiased under sta&onarity.

Ra#o of the es#mated distribu#on variance to asympto#c one:



ESS: Effec(ve Sample Size

IIDness of draws decreases

pm.effective_n(trace)

{'early_mean': 16857.0,
 'early_mean_log_': 12004.0,
 'late_mean': 27344.0,
 'late_mean_log_': 27195.0,
 'switchpoint': 195.0}

(40000 samples)

 


