Lecture 18
HMC and Formal Tests
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Jacobian

(from https:/www.projectrhea.org/rhea/index.php/Jacobian)
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ADVERT
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HMC/NUTS in pymc3

def clike2(value):
X value[ 0]
v value[1]
val = -100 * (T.sqrt(y**2+x*¥2)-1)**2 + (x-1)¥*3 - y -5
return (val)

with pm.Model() as model:
banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:

start = pm.find_MAP()

stepper=pm.Metropolis()

trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::57)

with model:

stepper_nuts=pm.NUTS()

trace _nuts=pm.sample(100000, step=stepper nuts)
pm.autocorrplot(trace_nuts[:16000])
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Recap of Hamiltonian Flow ideas

o start with p(q)
e augment using momentum to p(p, q)

e the momentum comes from a kinetic enegy which looks
something like p* /2m

e write p(q) as e V)
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Canonical distribution

p(p,q) = e PV = ¢ K0 e=V9) — p(p|q)p(q)

and thus: H(p, q) = —log(p(p, q)) = —logp(p|q) — logp(q)

/ dpp(p, @) = / dpp(pl9)p(a) = p(q) / p(pla)dp = p(q)
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Phase Space level sets:
Microcanonical Distribution

Typical Set decomposes into level sets of
constant probability(energy)

The energy Hamiltonian
2

H(p,q) = g—m +V(g) = E;,

with E; constants (constant energies) for
each level-set foliate and where the potential
energy V(q) = —log(p(q)) replaces the
energy term we had earlier in simulated
annealing.
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Microcanonical distribution: states for given energy.

Time implicit H: flows constant energy, vol preserving, reversible.

The canonical distribution can be written as a product of this microcanonical
distribution and a marginal energy distribution:

p(q;p) = p(0r|E)p(E)
where 0z indexes the position on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the
typical set.
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Hamiltonian Mechanics

Physics equations of motion in the Hamiltonian Formalism set up
the "glide" (over a level set).

dp OH dg OH
. y ™ 3y 3. — A
dt 0q dt Op
OH dH
Time independence; — =0 — — =0,
P 5 O it

H(t + At) = H(t) V4.
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Reversibility

T, from (g, p) — (¢’ ,p') to a "later" time ¢’ = ¢t + s. Mapping is 1-1,
inverse T_.. This can be obtained by simply negating time:

dp  OH
d(—t)  Oq

dg  OH
d(—t)  p
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Superman transform

If we then transform p — —p, we have the old equations back:

d-p)  0H
d(—t)  Oq

dg  OH
d(-t)  9(-p)

To reverse T, flip the momentum, run Hamiltonian equations until you get back
to the original position and momentum in phase space at original time t, then flip
the momentum again so it is pointing in the right direction.
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Volume in phase space is conserved

Jacobian:
1 5 O’ H S 6’ H
det odp O — 1+ 0(8)
532[{ 1—9 0*H
0q? OpOq

As a result of this, the momenta we augment our distribution with
must be dual to our pdf's parameters, transforming in the opposite
way so that phase space volumes are invariant.
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Basic Idea

1. Move on a level set of the Hamiltonian H(p, q). Pick up samples
at will with acceptance probability 1

2. Fire thrusters, that is sample p, from kinetic energy distribution,
to move to another level set

3. Repeat

@AM 207



More Problems arise

e discretization to solve differential equations can lead to infinities.
Thus the need for symplecticity

e |ack of reversibility even with symplecticity (we are marginally off the
level set)

e this means that the acceptance probability with no longer be 1
e how long should we go?
 whats a good kinetic energy?
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Discretization problems

oU

m  Bilt+ ) =pilt) — ep
. o PP 210
qi(t+e€) =qi(t) +e m,

o off-diagonal terms of size e makes
volume not preserved

0 e |eads to drift over time

0 e use "leapfrog" instead

@AM 207



&AM 207



&AM 207



Sympletic Leapfrog

e Only shear transforms allowed, will preserve
volume.

) Q Ty -5
SEANGDZARE |11 e

€
(T, pr 9 = ntr g) = 5 g s

» still error exists, oscillatory, so reversibility not
achieved

e use superman transform. Works even when we
are off level set.
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Acceptance probability

p(q’,p’)Q(q’,p’\q,p)]

A =minll, p(q,p)Q(g,p)|d,7')

What should we choose as our proposal?
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a @ Q(QL,IJL | qU,pu) =1
(Q()g Pu) (QL ; PL)

e a Q(go,po | qL,pL) =0
(Q():pu) (QLpr) (Q'ZLap'ZL)

» might choose Q(q',p'|q,p) = 6(¢ — qz)d(p" — p1).

e but small symplectic errors means this is only forward in time
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Superman choice

e tack on sign

change (g,p) — (qr, —pL)-

Superman to the rescue!

e proposal now:
Q(d,p |lg,p) = (¢ —qr)é(p’ + p1).

e Acceptance:

(gz, —pr)d(qr — qz)0(—pr + p1)

A = minll, P
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A =min[l,exp(—U(qr) + U(q) — K(pr) + K(p)]

= min|1, exp(—Hy, + H)]

critical thing with HMC is that our time evolution is always close
to being on a level set if we have no problems with our sympelctic
integrator. So our A always closer to 1, and we have a very efficient
sampler. Optimal acceptance can be shown: 65% roughly.
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From Neal's paper:

The significance of volume preservation for MCMC is that we need not
account for any change in volume in the acceptance probability for
Metropolis updates. If we proposed new states using some arbitrary,
non-Hamiltonian, dynamics, we would need to compute the
determinant of the Jacobian matrix for the mapping the dynamics
defines, which might well be infeasible.
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Stationarity

e want canonical distribution as stationary distribution

e partition phase space into small regions A; each with small volume V. Let the L
leapfrog step image of A; be By

e Detailed Balance: P(A;)T(B; | A;) = P(B;)T(A; | B))

e T(X]Y) is the conditional probability of proposing and then accepting a move to
region X if the current state is in region Y .

e Due to the reversibility of the leapfrog steps, the B, will also partition the space, and

since the leapfrog steps preserve volume (as does negation), each B; will also have
volume V.
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Detailed Balance

e obvious for i # j, but for 7 = 7, call it k:

e in limit of regions becoming smaller, H can be thought of as
constant inside the region, and thus the canonical densities and
transition probs become constant too:

V . V .
Eemp(_HAk)mznllvexp(_HBk T HAk )] — 76xp(_HBk)mznllaemp(_HAk T HBk )]
true
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Stationarity Proof

The probability of the next state being in By.:

P(By)R(Bg) + ZP(Ai)T(Bk | A;) = P(By)R(By) + ZP(Bk)T(Az’ | By)
= P(By)R(B) _I_P(Bk)ZT(Az’ | B)

= P(By)R(By) + P(By)(1 — R(By)) = P(Bx)
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Ergodicity
e aslong as we have no cycles we are good, the hamiltonian flow with
momentum resampling will ensure ergodicity
e butif Le = 27 (for oscillator) can get into trouble
e near ergodicty can lead to a bad sampler
 having chosen one, choose the other from a fairly small interval to fix
e in practice not a big problem

e dynamic ergodicity important for sampling efficiency
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HMC Algorithm (momentum reversal could be left out if
not within a more complex sampling scheme)

e fori=1:N_samples

e 1.Draw p ~ N(0, M)

e 2.Set g, = ¢¥ where the subscript ¢ stands for current
* 3.p.=p

e*x VU(q.)
2

e 4. Update momentum before going into LeapFrog stage: p* = p. —

e 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)
* ¢ =q +ep
o if not the last step, p = p — eVU(q)

eVU(q)
2

e 6. Complete leapfrog: p = p —
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HMC (contd)

e fori=1:N_samples

* /.p"t=—p
TM—l

° 8. ‘/'c — V(qc), KC — pC 2 pC
T*M—l

e 10.r ~ Unif(0,1)

(U.—U*+K.—K")

11.ifr<e
e acceptq; = q°

e otherwise reject
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def HMC(U,K,dUdq,N,q @, p 0, epsilon=0.01, L=100):
current g = g_©0
current p = p_ @
H = np.zeros(N)
gall = np.zeros(N)
accept=0
for j in range(N): 045 045
g = current_q
p current_p
#draw a new p 040
p = np.random.normal(0,1)
current_p=p
# leap frog 035
# Make a half step for momentum at the beginning
p = p - epsilon*dUdq(q)/2.0
# alternate full steps for position and momentum 030
for i in range(L):
g = g *+ epsilon*p
if (i 1= L-1): 025
p = p - epsilon*dUdq(q)
#make a half step at the end
p = p - epsilon*dUdq(q)/2. 020
# negate the momentum
p= -P;
current_U = U(current_q) 015
current_K = K(current_p)
proposed_U = U(q)
proposed_K = K(p) 010
A=np.exp( current_U-proposed_U+current_K-proposed_K)
# accept/reject
if np.random.rand() < A: 005
current_qg = ¢

qall[j]=q

sceeptr= 0.00 0.00
else: ' '

gall[j] = current_q "4 -3 -2 -1 0 1 2 3 4 "4 -3 -2 -1 0 1 2 3 4

H[j] = U(current_qg)+K(current_p)
print("accept=",accept/np.double(N))
return H, qall
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Autocorrelation: HMC vs MH

hmc mh
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H, gall= HMC(U=U,K=K,dUdg=dUdq,N=10000,q 0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)
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Momentum resampling

Draw p from a distribution that is
determined by the distribution of
momentum, i.e. p ~ N(0, /M) for
example, and attempt to explore the level
sets.

Firing the thruster moves us between
level sets!



Resampling Efficiency

Let p(E|q) as the transition distribution of
energies induced by a momentum

resampling using p(p|q) = —log K(p, q) at
a given position gq.

If p(E|q) narrow compared to the marginal
energy distribution p(E): random walk
amongst level sets proceeds slowly.

If p(E|q) matches p(E): independent

samples generated from the marginal
energy distribution very efficiently.
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Tuning: choice of Kinetic energy

e thus momenta are dual, can use covariance as inverse mass matrix

e |deal kinetic energy: microcanonical exploration easy and uniform, marginal
exploration matched by the transition distrib.

1
* |n practice we often use K(p) = §p'M_1p = Zp?/Zmi

e Set M ! to the covariance of the target distribution: maximally de-correlate
the target. Do in warmup (tune) phase.

e cansee thisby p — p/v/M, Then g — g/ M
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See this for Gaussian:

1 1
H=_pM p+odT g

On transformation

1 |
H=_@p+dgifM ' =3

Thus de-correlate target.

Generalize to arbitrary distributions.
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Tuning: integration time

e whats the best integration time?

e should we glide for a long time? then we wont get too may
samples

e if our integration was exact we could glide for arbitrary short times
e but integration is not exact and will infact take us off the level set

e thus too many samples/too short time will get us back to MH
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Tuning: integration time

 find the point at which the orbital expectations converge to the
spatial expectations..a sort of ergodicity

e L., number of iterations for which we run the Hamiltonian

dynamics, and e which is the (small) length of time each iteration
IS run.

e generally static not good, under-samples tails (high-energy
micro-canonicals). Estimate dynamically: NUTS (pymc3 and Stan)

@AM 207



L tuning

e iIn HMC, start L = 100 increase if for fixed step size,
autocorrelation is too much

e Tails correspond to much higher energies, larger level-set
surfaces are larger

e fixed length explores a small portion of this set before a
momentum resampling takes us off.

e better to set dynamically: NUTS termination criterion
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e tuning

e if too small, accurate trajectories but too much time
e if too large, we will go off more and thus reject most of the time
e optimal € is determined by the "shadow hamiltonian"

e want acceptance to be between 60 and 80 percent in most cases
to have lower bounds of shadow and upper bounds of shadow
close to each other
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From HMC to HMC++

e one idea maybe to average over all points
in orbit of length L

e To autotune L it is better to sample from
orbit rather than get last point only:
dynamic ergodicity: time average is orbit
average

e NUTS: sample trajectories containing
initial point and then sample point from
them with trajectory canonical weights

 need a criterion for when to stop doing
this
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NUTS in a nutshell

termination criterion destroys detailed
balance, must rebuild

sample from trajectory not just
endpoint

sample backwards and forwards in time
until u-turn

choose a sample with boltzmann
weights over the trajectory using
multinomial or slice sampling



Tumors in pymc3 with NUTS

with Model() as tumor_model:
# Uniform priors on the mean and variance of the Beta distributions
mu = Uniform("mu",0.00001,1.)
nu = Uniform('"nu",0.00001,1.)
# Calculate hyperparameters alpha and beta as a function of mu and nu
alpha = pm.Deterministic('alpha', mu/(nu*nu))
beta = pm.Deterministic('beta’, (1.-mu)/(nu*nu))
# Priors for each theta
thetas = Beta('theta', alpha, beta, shape=N)
# Data likelihood
obs deaths = Binomial('obs deaths', n=tumorn, p=thetas, observed=tumory)

with tumor_ model:
# Use ADVI for initialization
mu, sds, elbo = pm.variational.advi(n=100000)
step = pm.NUTS(scaling=tumor model.dict to_array(sds)**2,
is _cov=True)
tumor_trace = pm.sample(5000, step, start=mu)
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Sarrjpling with py.mc3
Diagnostics




Disasters

O = N W A O, o
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UK coal mining disasters, 1851-1962

L, o
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Year




Model

y|T, A1, A2 ~ Poisson(r;)

ry = A if t < Telse Ay fort € [t;, tp]
T ~ DiscreteUni form(t;, ty)

A1 ~ Ezp(a)
A2 ~ Ezxp(b)
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from pymc3.math import switch

with pm.Model() as coaldisl:
early_mean = pm.Exponential('early _mean', 1)
late_mean = pm.Exponential('late_mean', 1)
switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldisl:
stepper=pm.Metropolis()
trace = pm.sample(40000, step=stepper)

100% || 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]
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>>>coaldisl.vars #stochastics

[early mean_log , late mean_log , switchpoint]
>>>coaldisl.deterministics #deterministics

[early mean, late _mean]

>>>coaldisl.observed RVs

[disasters]

>>>ed=pm.Exponential.dist(1)

<class 'pymc3.distributions.continuous.Exponential'>
>>>ed.random(size=10)

array([ 1.18512233, 2.45533355, 0.0418/961, 35.3296/837,
0.29723148, 1.30670324, 0.23335826, 0.56203427,

>>>type(switchpoint), type(early mean)
(pymc3.model . FreeRV, pymc3.model.TransformedRV)
>>>switchpoint. logp({'switchpoint':55,

'early mean_log ':1, 'late mean _log ':1})
array(-4.7184988/71295094)
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Model convergence

e traces white noisy

e diagnose autocorrelation, check parameter
correlations

pm.trace_to_dataframe(trace).corr()
e visually inspect histogram every m samples

e traceplots from different starting points,
different chains

e formal tests: Gewecke, Gelman-Rubin,
Effective Sample Size
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Gewecke: difference of means

H, - o, — Mo, =0 — 6, —0; =0

\/ var(6y)  wvar(60;)
09,0, = |

nq 19

|:u'91 — “92‘ < 209, -0,
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with coaldisl:
stepper=pm.Metropolis()
tr = pm.sample(2000, step=stepper)

15
z = geweke(tr, intervals=15)

y [ [ AN EUSUSNUNUNUN SNSRI [SEUSUNSUENUNUU RO SO SUUSSUR NN
plt.scatter(*z[ 'early_mean'].T)
plt.hlines([-1,1], @, 1000, linestyles='dotted')

0.5 plt.xlim(@, 1000)
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Gelman-Rubin

Multiple chains..compute within chain early_mean_log_
variance and compare to between chain
variance

late_mean_log_

1
2 __ L E
Sj o n — 1 ;(92] IJJHJ) switchpoint

1 1 early_mean
W = EZS?; B = E;Mi

late_mean
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Use weighted average of w and B to estimate variance of the
stationary distribution pm.gelman_rubin(trace):

R 1 1
) =(1— =)w+ —B
Var(0) = ( n)w—l—n

Overestimates our variance, but unbiased under stationarity.

Ratio of the estimated distribution variance to asymptotic one:

P \/V&;(O)
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ESS: Effective Sample Size

|IDness of draws decreases

pm.effective n(trace)

{'early mean': 16857.0,
'early mean log ': 12004.0,

'late mean': 27344.0,
'late_mean _log ': 27195.0,
'switchpoint': 195.0}

(40000 samples)

o mn
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