
Lecture 18

HMC and Formal Tests

Jacobian

(from h(ps://www.projectrhea.org/rhea/index.php/Jacobian)

ADVERT

HMC/NUTS in pymc3

def clike2(value):
 x = value[0]
 y = value[1]
 val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
 return (val)

with pm.Model() as model:
 banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
 start = pm.find_MAP()
 stepper=pm.Metropolis()
 trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
 stepper_nuts=pm.NUTS()
 trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])

HMC

Recap of Hamiltonian Flow ideas

• start with

• augment using momentum to

• the momentum comes from a kine3c enegy which looks
something like

• write as

• then

Canonical distribu/on

and thus:

Phase Space level sets:
Microcanonical Distribu6on

Typical Set decomposes into level sets of
constant probability(energy)

The energy Hamiltonian

with constants (constant energies) for
each level-set foliate and where the poten&al
energy replaces the
energy term we had earlier in simulated
annealing.

Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical
distribu1on and a marginal energy distribu0on:

where indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the
typical set.

Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up
the "glide" (over a level set).

Time independence: ,

.

Reversibility

 from to a "later" +me . Mapping is 1-1,
inverse . This can be obtained by simply nega+ng +me:

Superman transform

If we then transform , we have the old equa4ons back:

To reverse , flip the momentum, run Hamiltonian equa5ons un5l you get back
to the original posi5on and momentum in phase space at original 5me t, then flip
the momentum again so it is poin5ng in the right direc5on.

Volume in phase space is conserved

Jacobian:

As a result of this, the momenta we augment our distribu5on with
must be dual to our pdf's parameters, transforming in the opposite
way so that phase space volumes are invariant.

Basic Idea

1. Move on a level set of the Hamiltonian . Pick up samples
at will with acceptance probability 1

2. Fire thrusters, that is sample , from kine>c energy distribu>on,
to move to another level set

3. Repeat

More Problems arise

• discre(za(on to solve differen(al equa(ons can lead to infini(es.
Thus the need for symplec(city

• lack of reversibility even with symplec(city (we are marginally off the
level set)

• this means that the acceptance probability with no longer be 1

• how long should we go?

• whats a good kine(c energy?

Discre'za'on problems

•

•

• off-diagonal terms of size makes
volume not preserved

• leads to dri7 over 8me

• use "leapfrog" instead

Symple'c Leapfrog

• Only shear transforms allowed, will preserve
volume.

•

•

•

• s7ll error exists, oscillatory, so reversibility not
achieved

• use superman transform. Works even when we
are off level set.

Acceptance probability

What should we choose as our proposal?

• might choose

• but small symplec2c errors means this is only forward in 2me

Superman choice

• tack on sign change .
Superman to the rescue!

• proposal now:

• Acceptance:

cri$cal thing with HMC is that our !me evolu!on is always close
to being on a level set if we have no problems with our sympelc$c
integrator. So our always closer to 1, and we have a very efficient
sampler. Op$mal acceptance can be shown: 65% roughly.

From Neal's paper:

The significance of volume preserva4on for MCMC is that we need not
account for any change in volume in the acceptance probability for

Metropolis updates. If we proposed new states using some arbitrary,
non-Hamiltonian, dynamics, we would need to compute the

determinant of the Jacobian matrix for the mapping the dynamics
defines, which might well be infeasible.

Sta$onarity

• want canonical distribu0on as sta0onary distribu0on

• par00on phase space into small regions each with small volume V. Let the L
leapfrog step image of be

• Detailed Balance:

• is the condi0onal probability of proposing and then accep0ng a move to
region X if the current state is in region Y .

• Due to the reversibility of the leapfrog steps, the will also par00on the space, and
since the leapfrog steps preserve volume (as does nega0on), each will also have
volume V.

Detailed Balance

• obvious for , but for , call it k:

• in limit of regions becoming smaller, H can be thought of as
constant inside the region, and thus the canonical densi9es and
transi9on probs become constant too:

true

Sta$onarity Proof

The probability of the next state being in :

Ergodicity

• as long as we have no cycles we are good, the hamiltonian flow with
momentum resampling will ensure ergodicity

• but if (for oscillator) can get into trouble

• near ergodicty can lead to a bad sampler

• having chosen one, choose the other from a fairly small interval to fix

• in prac>ce not a big problem

• dynamic ergodicity important for sampling efficiency

HMC Algorithm (momentum reversal could be le8 out if
not within a more complex sampling scheme)

• for i=1:N_samples

• 1. Draw

• 2. Set where the subscript stands for current

• 3.

• 4. Update momentum before going into LeapFrog stage:

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step,

• 6. Complete leapfrog:

HMC (contd)

• for i=1:N_samples

• 7.

• 8.

• 9.

• 10.

• 11. if

• accept

• otherwise reject

def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
 current_q = q_0
 current_p = p_0
 H = np.zeros(N)
 qall = np.zeros(N)
 accept=0
 for j in range(N):
 q = current_q
 p = current_p
 #draw a new p
 p = np.random.normal(0,1)
 current_p=p
 # leap frog
 # Make a half step for momentum at the beginning
 p = p - epsilon*dUdq(q)/2.0
 # alternate full steps for position and momentum
 for i in range(L):
 q = q + epsilon*p
 if (i != L-1):
 p = p - epsilon*dUdq(q)
 #make a half step at the end
 p = p - epsilon*dUdq(q)/2.
 # negate the momentum
 p= -p;
 current_U = U(current_q)
 current_K = K(current_p)
 proposed_U = U(q)
 proposed_K = K(p)
 A=np.exp(current_U-proposed_U+current_K-proposed_K)
 # accept/reject
 if np.random.rand() < A:
 current_q = q
 qall[j]=q
 accept+=1
 else:
 qall[j] = current_q
 H[j] = U(current_q)+K(current_p)
 print("accept=",accept/np.double(N))
 return H, qall

Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)

Momentum resampling

Draw from a distribu/on that is
determined by the distribu/on of
momentum, i.e. for
example, and a9empt to explore the level
sets.

Firing the thruster moves us between
level sets!

Resampling Efficiency

Let as the transi+on distribu+on of
energies induced by a momentum
resampling using at
a given posi+on .

If narrow compared to the marginal
energy distribu7on : random walk
amongst level sets proceeds slowly.

If matches : independent
samples generated from the marginal
energy distribu7on very efficiently.

Tuning: choice of Kine.c energy

• thus momenta are dual, can use covariance as inverse mass matrix

• Ideal kine6c energy: microcanonical explora6on easy and uniform, marginal
explora6on matched by the transi6on distrib.

• In prac6ce we o?en use

• Set to the covariance of the target distribu6on: maximally de-correlate
the target. Do in warmup (tune) phase.

• can see this by , Then

See this for Gaussian:

On transforma+on

 if

Thus de-correlate target.

Generalize to arbitrary distribu1ons.

Tuning: integra,on ,me

• whats the best integra.on .me?

• should we glide for a long .me? then we wont get too may
samples

• if our integra.on was exact we could glide for arbitrary short .mes

• but integra.on is not exact and will infact take us off the level set

• thus too many samples/too short .me will get us back to MH

Tuning: integra,on ,me

• find the point at which the orbital expecta3ons converge to the
spa3al expecta3ons..a sort of ergodicity

• , number of itera3ons for which we run the Hamiltonian
dynamics, and which is the (small) length of 3me each itera3on
is run.

• generally sta3c not good, under-samples tails (high-energy
micro-canonicals). Es3mate dynamically: NUTS (pymc3 and Stan)

L tuning

• in HMC, start increase if for fixed step size,
autocorrela8on is too much

• Tails correspond to much higher energies, larger level-set
surfaces are larger

• fixed length explores a small por8on of this set before a
momentum resampling takes us off.

• beCer to set dynamically: NUTS termina8on criterion

 tuning

• if too small, accurate trajectories but too much 3me

• if too large, we will go off more and thus reject most of the 3me

• op3mal is determined by the "shadow hamiltonian"

• want acceptance to be between 60 and 80 percent in most cases
to have lower bounds of shadow and upper bounds of shadow
close to each other

From HMC to HMC++

• one idea maybe to average over all points
in orbit of length

• To autotune it is be-er to sample from
orbit rather than get last point only:
dynamic ergodicity: 9me average is orbit
average

• NUTS: sample trajectories containing
ini9al point and then sample point from
them with trajectory canonical weights

• need a criterion for when to stop doing
this

NUTS in a nutshell

• termina)on criterion destroys detailed
balance, must rebuild

• sample from trajectory not just
endpoint

• sample backwards and forwards in)me
un)l u-turn

• choose a sample with boltzmann
weights over the trajectory using
mul)nomial or slice sampling

Tumors in pymc3 with NUTS

with Model() as tumor_model:
 # Uniform priors on the mean and variance of the Beta distributions
 mu = Uniform("mu",0.00001,1.)
 nu = Uniform("nu",0.00001,1.)
 # Calculate hyperparameters alpha and beta as a function of mu and nu
 alpha = pm.Deterministic('alpha', mu/(nu*nu))
 beta = pm.Deterministic('beta', (1.-mu)/(nu*nu))
 # Priors for each theta
 thetas = Beta('theta', alpha, beta, shape=N)
 # Data likelihood
 obs_deaths = Binomial('obs_deaths', n=tumorn, p=thetas, observed=tumory)

with tumor_model:
 # Use ADVI for initialization
 mu, sds, elbo = pm.variational.advi(n=100000)
 step = pm.NUTS(scaling=tumor_model.dict_to_array(sds)**2,
 is_cov=True)
 tumor_trace = pm.sample(5000, step, start=mu)

Sampling with pymc3

Diagnos(cs

Model

from pymc3.math import switch
with pm.Model() as coaldis1:
 early_mean = pm.Exponential('early_mean', 1)
 late_mean = pm.Exponential('late_mean', 1)
 switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
 rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
 disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
 stepper=pm.Metropolis()
 trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]

>>>coaldis1.vars #stochastics
[early_mean_log_, late_mean_log_, switchpoint]
>>>coaldis1.deterministics #deterministics
[early_mean, late_mean]
>>>coaldis1.observed_RVs
[disasters]
>>>ed=pm.Exponential.dist(1)
<class 'pymc3.distributions.continuous.Exponential'>
>>>ed.random(size=10)
array([1.18512233, 2.45533355, 0.04187961, 3.32967837, 0.0268889 ,
 0.29723148, 1.30670324, 0.23335826, 0.56203427, 0.15627659])
>>>type(switchpoint), type(early_mean)
(pymc3.model.FreeRV, pymc3.model.TransformedRV)
>>>switchpoint.logp({'switchpoint':55,
 'early_mean_log_':1, 'late_mean_log_':1})
array(-4.718498871295094)

Model convergence

• traces white noisy

• diagnose autocorrela3on, check parameter
correla3ons

pm.trace_to_dataframe(trace).corr()

• visually inspect histogram every m samples

• traceplots from different star7ng points,
different chains

• formal tests: Gewecke, Gelman-Rubin,
Effec7ve Sample Size

Gewecke: difference of means

with coaldis1:
 stepper=pm.Metropolis()
 tr = pm.sample(2000, step=stepper)

z = geweke(tr, intervals=15)

plt.scatter(*z['early_mean'].T)
plt.hlines([-1,1], 0, 1000, linestyles='dotted')
plt.xlim(0, 1000)

Gelman-Rubin

Mul$ple chains..compute within chain
variance and compare to between chain
variance

Use weighted average of and to es1mate variance of the
sta1onary distribu1on pm.gelman_rubin(trace):

Overes&mates our variance, but unbiased under sta&onarity.

Ra#o of the es#mated distribu#on variance to asympto#c one:

ESS: Effec(ve Sample Size

IIDness of draws decreases

pm.effective_n(trace)

{'early_mean': 16857.0,
 'early_mean_log_': 12004.0,
 'late_mean': 27344.0,
 'late_mean_log_': 27195.0,
 'switchpoint': 195.0}

(40000 samples)

