Lecture 1/
Gibbs, Data Augmentation, and HMC

@AM 207

The idea of Gibbs
f(z) = / F(z, y)dy = / F(zly)(y)dy = / dyf (zly) / iz’ f(yl2') £ (')

Thus: f(z) = /h(w,x')f(x’)dw’ integral fixed point equation

where h(z, ') = / dyf (zly) £ (yl').

@AM 207

lterative scheme in which the "transition kernel" h(z, z") is used to
create a proposal for metropolis-hastings moves:

f(x:) = /h(mt,mt_l)f(mt_l)dmt_l, a Stationary distribution.

h(z,z') = /dyf(m\y)f(y\w').: Sample alternately to get

transitions.

Can sample & marginal and y|x so can sample the joint z, y.

@AM 207

Example

Sample from f(z,y) = z*exp[—zy® — y° + 2y — 4x]

&AM 207

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

0.0 0.5 1.0 1.5 2.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

0.0

0.5

&AM 207

1.0

1.5

Example:

f(z,y) = ®exp[—zy® — v + 2y — 4a]
— 22exp[—a(y? + 4)]exp[—? + 2y
= g(y)Gamma(z, 3,y* + 4)

— f(z|y) ~ Gamma(3,y” + 4)

f(z,y) = = exp[—y* (1 + z) + 2y|exp[—4«]

1 1
1+2° /(2(1 + z))

)

0 = f(yle) ~ N

Sampler

def xcond(y):
return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
return norm.rvs(1l/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
x=start[0]
y=start[1]
samples=np.zeros((N+1, 2))
samples[0,0]=x
samples[0,1]=y
for i in range(1,N,2):
x=xgiveny sample(y)
samples[1i,0]=x
samples[i, 1]=vy
HUBHHBBHBBHBBHHBBHBBHY
y=ygivenx_sample(x)
samples[i+1,0]=x
samples[i+1l,1]=y
return samples
out=gibbs(xcond, ycond, 100000)

&AM 207

0.5

1.0

1.5

20

2.5

3.0

3.5

40

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

0.0

0.5

@AM 207

1.0

1.5

2.0

More about gibbs

easiest is to know how to sample
directly from conditionals: no need for
locality

moves one component (or one block) at
a time

all is not lost if thats not the case: can
use a MH-step once stationarity has
been reached

this makes gibbs a very general idea

Fully Bayesian Rat tumors

Joint Posterior:

70 70
p(©,a,8Y,{n:}) x p(e, B) | | Beta(6i, e, B) | | Binom(ns,y;, 6;)
1=1 1=1

Conditionals:

p(0;|yi,n;, o, B) = Beta(a + vy;, B+ n; — ;)

@AM 207

More Conditionals

p(a]Y,©, 6) o p(a B) (o)

N
o+
P(81Y,8,0) o pla §) (a2)
These depend on Y and {n} via the 6's

@AM 207

Na+m>N

-

1=1

Sampling (sampler done in lab)

* Fix o and B, we have a Gibbs step for all of the ;s

 For a and 3, everything else fixed, use stationary metropolis step,
as conditionals are not isolatable to simply sampled distributions

e when we sample for a, we will propose a new value using a
normal proposal, while holding all the 6s and g constant at the

old value. ditto for 8.

@AM 207

&AM 207

GENERAL GIBBS SAMPLER

e modelis a DAG

e for eg, in a hierarchical model, we have observations at the
bottom of a tree, next layer intermediate parameters, upper
layers hyper-parameters

e sample conditionals. Might be direct due to conjugacy or explicit
conditionals, or metropolis steps, or other samplers.

"sampler within gibbs"

@AM 207

More Gibbs Theory

The transition kernel corresponds to this
proposal:

ar(a*la) = { PIERIT) Tt = 20y
0 otherwise

where az’;c is the kth component (or block)
of z at ith step, while * __is all other
components of z at the same step

@AM 207

xold

Gibbs=MH with no rejection

A =min(1, v

p(z*) = p(z*,,z}) = p(zi|z* ,)p(z* ;)

*
L_p

)p(z*;) qi(z'|z*)

;
L_p

)p(z' ;) gr(z*|z?)

) = min(1

p(z}

*
L_p

)p(z*) p(at

" p(zt

;
L_p

)p(z*) p(z}

Componentwise update, — z*, = ', and A is 1!

@AM 207

Blockwise Sampling vs Componentwise sampling

e the most general structure is to sample each parameter in turn.
This can lead to higher autocorrelation and slower sampling

e may be worth sampling blocks of parameters together using a
multivariate proposal

e mix and match as you see fit (see homework)

@AM 207

Tetchy Gibbs

8
8
7
6 6 L
5
4 < 1
3
2 2
1
| — °
0
-1
-1 0 1 2 3 4 5 6 7 8 0 2 4

&AM 207

1.0

0.8

0.6

0.4

0.2

20

Xxcorr on left, ycorr on right

@AM 207

0.4

0.2

||| 0.0
0.0 HHHHHH'H—M
0 10 30 40 50 0

Data

Augmentation

want to sample a p(x)

The difference from Gibbs Sampling: the other variable, say v, is to
be treated as latent.

The game is to construct a joint p(x, y) such that we can sample
from p(x|y) and p(y|x), and then find the marginal

p(z) = / dyp(z,y).

@AM 207

Simplest form of a DA algo:

1.Draw Y ~ pyx (. |z) and call the observed value y

2. Draw X1 ~ pxy (- |v)

3. Histo the X

@AM 207

Usual "Fake News" Example
Sample from p(z) = e‘a’z/z/\/Zw.

Take p(w,y) - 1/(\/%) €XPp {—(332 - \/§$y‘|‘ y2)}

Y| X=z ~ N(z/v2,1/2) and X|Y =y ~ N(y/v2,1/2)

The x-marginal is o e % /2 / e~ (W=2/V2)’ dy

@AM 207

Example (contd)

N=100000

x=np.zeros(N)

x[@] = np.random.rand() # INITIALIZE

for i in np.arange(1,N):
Y=sp.stats.norm.rvs(x[1i-1]/np.sqrt(2), 0.5)
X[1]=sp.stats.norm.rvs(Y/np.sqrt(2), 0.5)

 AM 207

06

05

04

03

02

01

00

Transition kernel

h(z',z) = h(z'|z) = /Yp(a:'\y) p(y|z) dy has stationarity by

construction from Gibbs.

Itsaprobablllty/ z'|z)dx’ _// p(y|lz) dy dz’
— [swlo) | [s/ w)de’| dy= [plole)dy =1

@AM 207

h(z'|z) p(z) is symmetricin (z, z'):

/

,y) p(z,y)
p(y) x4

h(a'l2) (@) = p(@) | p(e'l0) pyle) dy = [2

The rhs is symmetric in (z,z') and so is h(z'|z)p(z).

The Markov chain generated with transition probability h(z'|z) is
REVERSIBLE and thus supports detailed balance.

@AM 207

g2
.

gz

gz

&AM 207

|E[g2] — q2| |E[g2] — ¢2|

|E[g2] — ¢2|

Problems with Metropolis
MCMC

overshoot and oscillate at pinches
need to specify step step sizes

large steps go outside typical set and
are not accepted

small steps accepted but go nowhere

large correrlations

Hamiltonian
Monte
Carlo

Need a Coherent Glide

* want to cover on p(q) better than a
drunkard

* move smoothly on p(q)

e instead we will augment with a
"momentum"” variable p

* try to move smoothly on p(p, q)

e and then marginalize:

/ dpp(p, q) = / dpp(p|q)r(q) = p(q)

&AM 207

R0
7 Zaa N\
/

e -—
/ -7 \\\\\

|

T

&AM 207

Balance between gravity and momentum
in a rocket provides it

Now, like in sampling, let
p(p, q) _ e—Energy

Carry out an augmentation with an
additional momentum with the energy
Hamiltonian

p(p,q) = e PV = ¢ K0 e=V9) = p(p|q)p(q)

and thus: H(p, q) = —log(p(p, q)) = —logp(p|q) — logp(q)

The choice of a kinetic energy term then is the choice of a

conditional probability distribution over the "augmented"
momentum which ensures that

/ dpp(p, q) — / dpp(pla)p(a) = p(a) / p(pla)dp = p(a)

@AM 207

Canonical distribution

Distribution of a physical system in connection with a heat bath.

Its temperature if thus fixed.

p(p, g) is our canonical distribution

p(p,q) = e P = e KPD VD) — p(p|q)p(q)

@AM 207

Phase Space level sets

Typical Set decomposes into level sets of
constant probability(energy)

The energy Hamiltonian
2

p

with E; constants (constant energies) for
each level-set foliate and where the

potential energy V(q) = —log(p(q)).

@AM 207

H(E)

h

We are looking at level sets of the

Joint distribution

Why do it this way?

Because Hamiltonian flow conserves energy, leading naturally to
using level sets and the

Microcanonical distribution

@AM 207

Microcanonical distribution: states for given energy.

Time implicit H: flows constant energy, vol preserving, reversible.

The canonical distribution can be written as a product of this microcanonical
distribution and a marginal energy distribution:

p(q;p) = p(0r|E)p(E)
where 0z indexes the position on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the
typical set.

@AM 207

Momentum resampling (thruster fire) moves us between level sets

@AM 207

Traverse a level set: Hamiltonian Mechanics

Physics equations of motion in the Hamiltonian Formalism set up the
"glide" (over a level set).

dp OH
dt 0q
da _oH
dt Op
d H
H =p*/2m + V(q), d_ZZ = %q = %‘; = Force: Newton's law.

@AM 207

Oscillator: an EXACT solution!

10 4
X
8 —al 3
—
2
6
1
4
:;: 0
2
-1
0
-2
.2 3
-4 4 e s e edanse®”
0 1 2 3 4 5 6 7 —~4 2 0 2

ambda t: 4. * np.cos(t)

= L
= lambda t: -4. ¥ np.sin(t)

q_t
p_t

&AM 207

Explicitly time-independent Hamiltonian is conserved

If the Hamiltonian H doesn't have a functional dependence on time
we see that

d_H o Z OH dqz- oOH dpz'_ OH
dt ' Oq; dt Op; dt | Ot

1

d_H_Z'BHE?H OH., 8H.] OH
dt |

0q; Op; (fm)(0q;)_ Ot

1

@AM 207

If

OH _ dH _
ot dt

- ’

Then
H(t + At) = H(t) Vi.

This time independence is crucial to reversibility: cannot figure
which direction equations are being run

@AM 207

Reversibility

T, from (q,p) — (¢',p’) to a "later" time ¢’ = ¢ + s. Mapping is 1-1,
inverse T'_.. This can be obtained by simply negating time:

dp OH
d(—t) Oq

dg ~ OH
d(—t) p

@AM 207

To get reversibility:

If we then transform p — —p, we have the old equations back:

d(-p) 0H
d(—t) Oq

dg ~ OH
d(—t) 9(-p)

@AM 207

Superman Transform

To reverse T, flip the momentum, run Hamiltonian equations T,
until you get back to the original position and momentum in phase
space at time t, then flip the momentum again so it is pointing In
the right direction.

@AM 207

Volume in phase space is conserved

T, for small change s = ¢ can be written as:

dg
Ts — (q> +5(j;) + 0(6%)
p at

Jacobian:
146282 520
24P w and thus the determinant is 1 + O(6%).
582[{ 1—94 O*H
0q? Opdq _

@AM 207

Thus as our system evolves, any contraction or expansion in
position space must be compensated by a respective expansion or
compression in momentum space.

As a result of this, the momenta we augment our distribution with
must be dual to our pdf's parameters, transforming in the opposite
way so that phase space volumes are invariant.

@AM 207

@AM 207

Between level sets:
Momentum resampling

Draw p from a distribution that is
determined by the distribution of
momentum, i.e. p ~ N(0, /M) for
example, and attempt to explore the level
sets.

Firing the thruster moves us between
level sets!

That is, we sample the marginal energy
distribution.

Resampling Efficiency

Let p(E|q) as the transition distribution of
energies induced by a momentum

resampling using p(p|q) = —log K(p, q) at
a given position gq.

If p(E|q) narrow compared to the marginal
energy distribution p(E): random walk
amongst level sets proceeds slowly.

If p(E|q) matches p(E): independent

samples generated from the marginal
energy distribution very efficiently.

&AM 207

HMC/NUTS in pymc3

def clike2(value):
X value[0]
v value[1]
val = -100 * (T.sqrt(y**2+x*¥2)-1)**2 + (x-1)¥*3 - y -5
return (val)

with pm.Model() as model:
banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:

start = pm.find_MAP()

stepper=pm.Metropolis()

trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::57)

with model:

stepper_nuts=pm.NUTS()

trace _nuts=pm.sample(100000, step=stepper nuts)
pm.autocorrplot(trace_nuts[:16000])

@AM 207

correlation

correlation

correlation

correlation

banana_0

40

banana_1

lag
banana_0

100

banana_1

40

100

Basic Idea

1. Move on a level set of the Hamiltonian H(p, q). Pick up samples
at will with acceptance probability 1

2. Fire thrusters, that is sample p, from kinetic energy distribution,
to move to another level set

3. Repeat

@AM 207

More Problems arise

e how long should we go?
 whats a good kinetic energy?

e discretization to solve differential equations and the need for
symplecticity

e |ack of reversibility even with symplecticity (we are marginally off the
level set)

e this means that thar acceptance probability with no longer be 1

@AM 207

Practical implementation

@AM 207

Discretization problems

oU

m Bilt+) =pilt) — ep
. o PP 210
qi(t+e€) =qi(t) +e m,

o off-diagonal terms of size e makes
volume not preserved

0 e |eads to drift over time

0 e use "leapfrog" instead

@AM 207

Sympletic Leapfrog

e Only shear transforms allowed, will preserve
volume.

) Q Ty -5
SEANGDZARE |11 e

€
(T, pr 9 = ntr g) = 5 g s

» still error exists, oscillatory, so reversibility not
achieved

e use superman transform. Works even when we
are off level set.

&AM 207

HMC Algorithm

e fori=1:N_samples
e 1. Draw p ~ N(0, M)
e 2.Set g, = ¢'¥ where the subscript ¢ stands for current

¢ 3. DPc =D
e*x VU(q.)

e 4. Update momentum before going into LeapFrog stage: p* = p, — 5

e 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)
* ¢ =q +ep
e if not the last step, p = p — eVU(q)

eVU(qg)
2

6. Complete leapfrog: p = p —

@AM 207

HMC (contd)

e fori=1:N_samples

* /.p"t=—p
TM—l

° 8. ‘/'c — V(qc), KC — pC 2 pC
T*M—l

e 10.r ~ Unif(0,1)

(U.—U*+K.—K")

11.ifr<e
e acceptq; = q°

e otherwise reject

@AM 207

def HMC(U,K,dUdq,N,q @, p 0, epsilon=0.01, L=100):
current g = g_©0
current p = p_ @
H = np.zeros(N)
gall = np.zeros(N)
accept=0
for j in range(N): 045 045
g = current_q
p current_p
#draw a new p 040
p = np.random.normal(0,1)
current_p=p
leap frog 035
Make a half step for momentum at the beginning
p = p - epsilon*dUdq(q)/2.0
alternate full steps for position and momentum 030
for i in range(L):
g = g *+ epsilon*p
if (i 1= L-1): 025
p = p - epsilon*dUdq(q)
#make a half step at the end
p = p - epsilon*dUdq(q)/2. 020
negate the momentum
p= -P;
current_U = U(current_q) 015
current_K = K(current_p)
proposed_U = U(q)
proposed_K = K(p) 010
A=np.exp(current_U-proposed_U+current_K-proposed_K)
accept/reject
if np.random.rand() < A: 005
current_qg = ¢

qall[j]=q

sceeptr= 0.00 0.00
else: ' '

gall[j] = current_q "4 -3 -2 -1 0 1 2 3 4 "4 -3 -2 -1 0 1 2 3 4

H[j] = U(current_qg)+K(current_p)
print("accept=",accept/np.double(N))
return H, qall

040

035

0.30

025

0.20

015

010

0.05

&AM 207

Autocorrelation: HMC vs MH

hmc mh
1.0
1.0
08
06
05
04
00 L, a T ¥ T iy 0.2
|
0 0 - — al lan -'. Aa aadd
05
0.2
0 20 40 &0 80 100 0 20 40 a0 80 100

H, gall= HMC(U=U,K=K,dUdg=dUdq,N=10000,q 0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)

@AM 207

