
Lecture 17
Gibbs, Data Augmenta0on, and HMC

The idea of Gibbs

Thus: integral fixed point equa5on

where

Itera&ve scheme in which the "transi&on kernel" is used to
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get

transi1ons.

Can sample marginal and so can sample the joint .

Example

Sample from

Example:

Sampler

def xcond(y):
 return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
 return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
 x=start[0]
 y=start[1]
 samples=np.zeros((N+1, 2))
 samples[0,0]=x
 samples[0,1]=y
 for i in range(1,N,2):
 x=xgiveny_sample(y)
 samples[i,0]=x
 samples[i, 1]=y
 ######################
 y=ygivenx_sample(x)
 samples[i+1,0]=x
 samples[i+1,1]=y
 return samples
out=gibbs(xcond, ycond, 100000)

More about gibbs

• easiest is to know how to sample
directly from condi5onals: no need for
locality

• moves one component (or one block) at
a 5me

• all is not lost if thats not the case: can
use a MH-step once sta5onarity has
been reached

• this makes gibbs a very general idea

Fully Bayesian Rat tumors

Joint Posterior:

Condi&onals:

More Condi*onals

These depend on and via the 's

Sampling (sampler done in lab)

• Fix and , we have a Gibbs step for all of the s

• For and , everything else fixed, use sta;onary metropolis step,
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a
normal proposal, while holding all the s and constant at the
old value. di?o for .

GENERAL GIBBS SAMPLER

• model is a DAG

• for eg, in a hierarchical model, we have observa8ons at the
bo:om of a tree, next layer intermediate parameters, upper
layers hyper-parameters

• sample condi8onals. Might be direct due to conjugacy or explicit
condi8onals, or metropolis steps, or other samplers.

"sampler within gibbs"

More Gibbs Theory

The transi+on kernel corresponds to this
proposal:

where is the th component (or block)
of at th step, while is all other
components of at the same step

Gibbs=MH with no rejec2on

Componentwise update, and is 1!

Blockwise Sampling vs Componentwise sampling

• the most general structure is to sample each parameter in turn.
This can lead to higher autocorrela5on and slower sampling

• may be worth sampling blocks of parameters together using a
mul5variate proposal

• mix and match as you see fit (see homework)

Tetchy Gibbs

xcorr on le), ycorr on right

Data
Augmenta)on

want to sample a

The difference from Gibbs Sampling: the other variable, say , is to
be treated as latent.

The game is to construct a joint such that we can sample
from and , and then find the marginal

Simplest form of a DA algo:

1. Draw and call the observed value y

2. Draw

3. Histo the

Usual "Fake News" Example

Sample from .

Take

The x-marginal is

Example (contd)

N=100000
x=np.zeros(N)
x[0] = np.random.rand() # INITIALIZE
for i in np.arange(1,N):
 Y=sp.stats.norm.rvs(x[i-1]/np.sqrt(2), 0.5)
 x[i]=sp.stats.norm.rvs(Y/np.sqrt(2), 0.5)

Transi'on kernel

 has sta&onarity by

construc&on from Gibbs.

Its a probability:

 is symmetric in :

The rhs is symmetric in and so is .

The Markov chain generated with transi3on probability is
REVERSIBLE and thus supports detailed balance.

Problems with Metropolis
MCMC

• overshoot and oscillate at pinches

• need to specify step step sizes

• large steps go outside typical set and
are not accepted

• small steps accepted but go nowhere

• large correrla9ons

Hamiltonian
Monte
Carlo

Need a Coherent Glide

• want to cover on be-er than a
drunkard

• move smoothly on

• instead we will augment with a
"momentum" variable

• try to move smoothly on

• and then marginalize:

Balance between gravity and momentum
in a rocket provides it

Now, like in sampling, let

Carry out an augmenta-on with an
addi-onal momentum with the energy
Hamiltonian

and thus:

The choice of a kine,c energy term then is the choice of a
condi,onal probability distribu,on over the "augmented"
momentum which ensures that

.

Canonical distribu/on

Distribu(on of a physical system in connec(on with a heat bath.

Its temperature if thus fixed.

 is our canonical distribu.on

Phase Space level sets

Typical Set decomposes into level sets of
constant probability(energy)

The energy Hamiltonian

with constants (constant energies) for
each level-set foliate and where the
poten&al energy .

We are looking at level sets of the

Joint distribu,on

Why do it this way?

Because Hamiltonian flow conserves energy, leading naturally to
using level sets and the

Microcanonical distribu/on

Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical
distribu1on and a marginal energy distribu0on:

where indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the
typical set.

Momentum resampling (thruster fire) moves us between level sets

Traverse a level set: Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up the
"glide" (over a level set).

, : Newton's law.

Oscillator: an EXACT solu3on!

q_t = lambda t: 4. * np.cos(t)
p_t = lambda t: -4. * np.sin(t)

Explicitly *me-independent Hamiltonian is conserved

If the Hamiltonian H doesn't have a func4onal dependence on 4me
we see that

if

,

Then

.

This &me independence is crucial to reversibility: cannot figure
which direc&on equa&ons are being run

Reversibility

 from to a "later" +me . Mapping is 1-1,
inverse . This can be obtained by simply nega+ng +me:

To get reversibility:

If we then transform , we have the old equa4ons back:

Superman Transform

To reverse , flip the momentum, run Hamiltonian equa5ons
un5l you get back to the original posi5on and momentum in phase
space at 5me t, then flip the momentum again so it is poin5ng in
the right direc5on.

Volume in phase space is conserved

 for small change can be wri1en as:

Jacobian:

 and thus the determinant is

Thus as our system evolves, any contrac2on or expansion in
posi2on space must be compensated by a respec2ve expansion or
compression in momentum space.

As a result of this, the momenta we augment our distribu5on with
must be dual to our pdf's parameters, transforming in the opposite
way so that phase space volumes are invariant.

Between level sets:
Momentum resampling

Draw from a distribu/on that is
determined by the distribu/on of
momentum, i.e. for
example, and a9empt to explore the level
sets.

Firing the thruster moves us between
level sets!

That is, we sample the marginal energy
distribu5on.

Resampling Efficiency

Let as the transi+on distribu+on of
energies induced by a momentum
resampling using at
a given posi+on .

If narrow compared to the marginal
energy distribu7on : random walk
amongst level sets proceeds slowly.

If matches : independent
samples generated from the marginal
energy distribu7on very efficiently.

HMC/NUTS in pymc3

def clike2(value):
 x = value[0]
 y = value[1]
 val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
 return (val)

with pm.Model() as model:
 banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
 start = pm.find_MAP()
 stepper=pm.Metropolis()
 trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
 stepper_nuts=pm.NUTS()
 trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])

Basic Idea

1. Move on a level set of the Hamiltonian . Pick up samples
at will with acceptance probability 1

2. Fire thrusters, that is sample , from kine>c energy distribu>on,
to move to another level set

3. Repeat

More Problems arise

• how long should we go?

• whats a good kine2c energy?

• discre2za2on to solve differen2al equa2ons and the need for
symplec2city

• lack of reversibility even with symplec2city (we are marginally off the
level set)

• this means that thar acceptance probability with no longer be 1

Prac%cal implementa%on

Discre'za'on problems

•

•

• off-diagonal terms of size makes
volume not preserved

• leads to dri7 over 8me

• use "leapfrog" instead

Symple'c Leapfrog

• Only shear transforms allowed, will preserve
volume.

•

•

•

• s7ll error exists, oscillatory, so reversibility not
achieved

• use superman transform. Works even when we
are off level set.

HMC Algorithm

• for i=1:N_samples

• 1. Draw

• 2. Set where the subscript stands for current

• 3.

• 4. Update momentum before going into LeapFrog stage:

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step,

• 6. Complete leapfrog:

HMC (contd)

• for i=1:N_samples

• 7.

• 8.

• 9.

• 10.

• 11. if

• accept

• otherwise reject

def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
 current_q = q_0
 current_p = p_0
 H = np.zeros(N)
 qall = np.zeros(N)
 accept=0
 for j in range(N):
 q = current_q
 p = current_p
 #draw a new p
 p = np.random.normal(0,1)
 current_p=p
 # leap frog
 # Make a half step for momentum at the beginning
 p = p - epsilon*dUdq(q)/2.0
 # alternate full steps for position and momentum
 for i in range(L):
 q = q + epsilon*p
 if (i != L-1):
 p = p - epsilon*dUdq(q)
 #make a half step at the end
 p = p - epsilon*dUdq(q)/2.
 # negate the momentum
 p= -p;
 current_U = U(current_q)
 current_K = K(current_p)
 proposed_U = U(q)
 proposed_K = K(p)
 A=np.exp(current_U-proposed_U+current_K-proposed_K)
 # accept/reject
 if np.random.rand() < A:
 current_q = q
 qall[j]=q
 accept+=1
 else:
 qall[j] = current_q
 H[j] = U(current_q)+K(current_p)
 print("accept=",accept/np.double(N))
 return H, qall

Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)

