
Lecture 17
Gibbs, Data Augmenta0on, and HMC



The idea of Gibbs

Thus:  integral fixed point equa5on

where 



Itera&ve scheme in which the "transi&on kernel"  is used to 
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get 

transi1ons.

Can sample  marginal and  so can sample the joint .



Example

Sample from 



Example:



Sampler

def xcond(y):
    return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
    return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
    x=start[0]
    y=start[1]
    samples=np.zeros((N+1, 2))
    samples[0,0]=x
    samples[0,1]=y    
    for i in range(1,N,2):
        x=xgiveny_sample(y)
        samples[i,0]=x
        samples[i, 1]=y
        ######################
        y=ygivenx_sample(x)
        samples[i+1,0]=x
        samples[i+1,1]=y    
    return samples
out=gibbs(xcond, ycond, 100000)



More about gibbs

• easiest is to know how to sample 
directly from condi5onals: no need for 
locality

• moves one component (or one block) at 
a 5me

• all is not lost if thats not the case: can 
use a MH-step once sta5onarity has 
been reached

• this makes gibbs a very general idea



Fully Bayesian Rat tumors

Joint Posterior: 

Condi&onals:



More Condi*onals

These depend on  and  via the 's



Sampling (sampler done in lab)

• Fix  and , we have a Gibbs step for all of the s

• For  and , everything else fixed, use sta;onary metropolis step, 
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a 
normal proposal, while holding all the s and  constant at the 
old value. di?o for .





GENERAL GIBBS SAMPLER

• model is a DAG

• for eg, in a hierarchical model, we have observa8ons at the 
bo:om of a tree, next layer intermediate parameters, upper 
layers hyper-parameters

• sample condi8onals. Might be direct due to conjugacy or explicit 
condi8onals, or metropolis steps, or other samplers.

"sampler within gibbs"



More Gibbs Theory

The transi+on kernel corresponds to this 
proposal:

where  is the th component (or block) 
of  at th step, while  is all other 
components of  at the same step



Gibbs=MH with no rejec2on

Componentwise update,  and  is 1!



Blockwise Sampling vs Componentwise sampling

• the most general structure is to sample each parameter in turn. 
This can lead to higher autocorrela5on and slower sampling

• may be worth sampling blocks of parameters together using a 
mul5variate proposal

• mix and match as you see fit (see homework)



Tetchy Gibbs



xcorr on le), ycorr on right



Data
Augmenta)on



want to sample a 

The difference from Gibbs Sampling: the other variable, say , is to 
be treated as latent.

The game is to construct a joint  such that we can sample 
from  and , and then find the marginal



Simplest form of a DA algo:

1. Draw  and call the observed value y

2. Draw 

3. Histo the 



Usual "Fake News" Example

Sample from .

Take 

The x-marginal is 



Example (contd)

N=100000
x=np.zeros(N)
x[0] = np.random.rand() # INITIALIZE
for i in np.arange(1,N):
    Y=sp.stats.norm.rvs(x[i-1]/np.sqrt(2), 0.5)
    x[i]=sp.stats.norm.rvs(Y/np.sqrt(2), 0.5)



Transi'on kernel

 has sta&onarity by 

construc&on from Gibbs.

Its a probability: 



 is symmetric in :

The rhs is symmetric in  and so is .

The Markov chain generated with transi3on probability  is 
REVERSIBLE and thus supports detailed balance.



Problems with Metropolis 
MCMC

• overshoot and oscillate at pinches

• need to specify step step sizes

• large steps go outside typical set and 
are not accepted

• small steps accepted but go nowhere

• large correrla9ons



Hamiltonian
Monte
Carlo



Need a Coherent Glide

• want to cover on  be-er than a 
drunkard

• move smoothly on 

• instead we will augment with a 
"momentum" variable 

• try to move smoothly on 

• and then marginalize: 



Balance between gravity and momentum 
in a rocket provides it

Now, like in sampling, let 

Carry out an augmenta-on with an 
addi-onal momentum with the energy 
Hamiltonian



and thus: 

The choice of a kine,c energy term then is the choice of a 
condi,onal probability distribu,on over the "augmented" 
momentum which ensures that

.



Canonical distribu/on

Distribu(on of a physical system in connec(on with a heat bath.

Its temperature if thus fixed.

 is our canonical distribu.on



Phase Space level sets

Typical Set decomposes into level sets of 
constant probability(energy)

The energy Hamiltonian 

with  constants (constant energies) for 
each level-set foliate and where the 
poten&al energy .



We are looking at level sets of the

Joint distribu,on

Why do it this way?

Because Hamiltonian flow conserves energy, leading naturally to 
using level sets and the

Microcanonical distribu/on



Microcanonical distribu/on: states for given energy.

Time implicit : flows constant energy, vol preserving, reversible.

The canonical distribu1on can be wri3en as a product of this microcanonical 
distribu1on and a marginal energy distribu0on:

where  indexes the posi.on on the level set.

Also need to sample Marginal Energy Distrib: probability of level set in the 
typical set.



Momentum resampling (thruster fire) moves us between level sets



Traverse a level set: Hamiltonian Mechanics

Physics equa,ons of mo,on in the Hamiltonian Formalism set up the 
"glide" (over a level set).

, : Newton's law.



Oscillator: an EXACT solu3on!

q_t = lambda t: 4. * np.cos(t)
p_t = lambda t: -4. * np.sin(t)



Explicitly *me-independent Hamiltonian is conserved

If the Hamiltonian H doesn't have a func4onal dependence on 4me 
we see that



if

, 

Then

.

This &me independence is crucial to reversibility: cannot figure 
which direc&on equa&ons are being run



Reversibility

 from  to a "later" +me . Mapping is 1-1, 
inverse . This can be obtained by simply nega+ng +me:



To get reversibility:

If we then transform , we have the old equa4ons back:



Superman Transform

To reverse , flip the momentum, run Hamiltonian equa5ons  
un5l you get back to the original posi5on and momentum in phase 
space at 5me t, then flip the momentum again so it is poin5ng in 
the right direc5on.



Volume in phase space is conserved

 for small change  can be wri1en as:

Jacobian:

 and thus the determinant is 



Thus as our system evolves, any contrac2on or expansion in 
posi2on space must be compensated by a respec2ve expansion or 
compression in momentum space.

As a result of this, the momenta we augment our distribu5on with 
must be dual to our pdf's parameters, transforming in the opposite 
way so that phase space volumes are invariant.



Between level sets: 
Momentum resampling

Draw  from a distribu/on that is 
determined by the distribu/on of 
momentum, i.e.  for 
example, and a9empt to explore the level 
sets.

Firing the thruster moves us between 
level sets!

That is, we sample the marginal energy 
distribu5on.



Resampling Efficiency

Let  as the transi+on distribu+on of 
energies induced by a momentum 
resampling using  at 
a given posi+on .

If  narrow compared to the marginal 
energy distribu7on : random walk 
amongst level sets proceeds slowly.

If  matches : independent 
samples generated from the marginal 
energy distribu7on very efficiently.



HMC/NUTS in pymc3

def clike2(value):
    x = value[0]
    y = value[1]
    val = -100 * (T.sqrt(y**2+x**2)-1)**2 + (x-1)**3 - y -5
    return (val)

with pm.Model() as model:
    banana = pm.DensityDist("custom", clike2, shape=2, testval=[1,1])

with model:
    start = pm.find_MAP()
    stepper=pm.Metropolis()
    trace=pm.sample(100000, step=stepper, start=start)
pm.autocorrplot(trace[20000::5])

with model:
    stepper_nuts=pm.NUTS()
    trace_nuts=pm.sample(100000, step=stepper_nuts)
pm.autocorrplot(trace_nuts[:16000])



Basic Idea

1. Move on a level set of the Hamiltonian . Pick up samples 
at will with acceptance probability 1

2. Fire thrusters, that is sample , from kine>c energy distribu>on, 
to move to another level set

3. Repeat



More Problems arise

• how long should we go?

• whats a good kine2c energy?

• discre2za2on to solve differen2al equa2ons and the need for 
symplec2city

• lack of reversibility even with symplec2city (we are marginally off the 
level set)

• this means that thar acceptance probability with no longer be 1



Prac%cal implementa%on



Discre'za'on problems

•

•

• off-diagonal terms of size  makes 
volume not preserved

• leads to dri7 over 8me

• use "leapfrog" instead



Symple'c Leapfrog

• Only shear transforms allowed, will preserve 
volume.

•

•

•

• s7ll error exists, oscillatory, so reversibility not 
achieved

• use superman transform. Works even when we 
are off level set.



HMC Algorithm

• for i=1:N_samples

• 1. Draw 

• 2. Set  where the subscript  stands for current

• 3. 

• 4. Update momentum before going into LeapFrog stage: 

• 5. LeapFrog to get new proposals. For j=1:L (first/third steps together)

•

• if not the last step, 

• 6. Complete leapfrog: 



HMC (contd)

• for i=1:N_samples

• 7. 

• 8. 

• 9. 

• 10. 

• 11. if 

• accept 

• otherwise reject



def HMC(U,K,dUdq,N,q_0, p_0, epsilon=0.01, L=100):
    current_q = q_0
    current_p = p_0
    H = np.zeros(N)
    qall = np.zeros(N)
    accept=0
    for j in range(N):
        q = current_q
        p = current_p
        #draw a new p
        p = np.random.normal(0,1)
        current_p=p
        # leap frog
        # Make a half step for momentum at the beginning
        p = p - epsilon*dUdq(q)/2.0
        # alternate full steps for position and momentum
        for i in range(L):
            q = q + epsilon*p
            if (i != L-1):
                p = p - epsilon*dUdq(q)
        #make a half step at the end
        p = p - epsilon*dUdq(q)/2.
        # negate the momentum
        p= -p;
        current_U = U(current_q)
        current_K = K(current_p)
        proposed_U = U(q)
        proposed_K = K(p)
        A=np.exp( current_U-proposed_U+current_K-proposed_K)
        # accept/reject
        if np.random.rand() < A:
            current_q = q
            qall[j]=q
            accept+=1
        else:
            qall[j] = current_q
        H[j] = U(current_q)+K(current_p)
    print("accept=",accept/np.double(N))
    return H, qall



Autocorrela*on: HMC vs MH

H, qall= HMC(U=U,K=K,dUdq=dUdq,N=10000,q_0=0, p_0=-4, epsilon=0.01, L=200)

samples_mh = MH_simple(p=P, n=10000, sig=4.0, x0=0)


