Lecture 16
Gibbs, Metropolis, and MH Samplers
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Fully Bayesian Rat tumors

Joint Posterior:

70 70
p(©,a,8Y,{n:}) x p(e, B) | | Beta(6i, e, B) | | Binom(ns,y;, 6;)
1=1 1=1

Need to move ALL OVER this posterior. BUT, it is not easy to
sample from.
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Ancestral Sampling

e sample from graph, that is from prior, then conditional prior, then
data-distribution

e but not enough to sample from posterior! What we want to do is
to to restrict all possible samples we got this way by:

e CONDITIONING on the data, and getting only those samples
consistent with this conditioning
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Basic Idea of Markov Chain Monte Carlo (MCMC(C)

Move all over p by identifying E = —log(p) with the energy of an
imaginary physical system. Thus p = exp(—E).

Move from z; to z; via a proposal q.
If the new state has lower energy, or higher probability, accept z;.

If the new state has higher energy, accept x;, with probability
proportional to the ratio p(z;)/p(x;) or exp(—(E; — E;)).

@AM 207



Intuition

a particle approaches typical set and then
gets stuck in it

Instead of sampling p we sample q,
yielding a new state, and a new proposal
distribution from which to sample.
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Sampling 6z(1 — x)

def metropolis(p, gdraw, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
for i in range(nsamp):
X_star = qgdraw(x_prev)
p_star = p(x_star)

p_prev = p(x_prev)
pdfratio = p_star/p_prev

if np.random.uniform() < min(1l, pdfratio):

samples[i] = x_star
X_prev = x_star
else:#we always get a sample
samples[i]= x_prev
return samples

def prop(x):
return np.random.normal(x, 0.6)

f = lambda x: 6*x*(1-x)

x@=np.random.uniform()
samps = metropolis(f, prop, 1000000, x0)
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Bayesian Normal-Normal
Model

Logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std _prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
Llogpost = lambda mu: loglike(mu) + logprior(mu)
def prop(x, step):
return np.random.normal(x, step)
x@=np.random.uniform()
nsamps=40000
samps, acc = metropolis(logpost, prop, 1, nsamps, x0)



Markov Chain

T(xn ‘wn—l y Lp—1- .- 7x1) — T(ajn ‘xn—l)

e non lID, stochastic process
e but one step memory only

e widely applicable, first order equations

T is a transition probability, so that /T(wn\xn_l)dxn_l = 1.
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Stationarity

1

Continuous case: define T" so that:

/da:is(a:i)T(xz-H ;) = s(x;11) then

/da:s(x)T(y\x) = /p(y, z)dz = s(y)
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Jargon

* Irreducible: can go from anywhere to everywhere
e Aperiodic: no finite loops

 Recurrent: visited repeatedly. Harris recurrent if all states are
visited infinitely as t — oc.
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Rainy Sunny Markov chain

2/3
1/2
Rainy Sunny
1/2

aperiodic and irreducible
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Transition matrix, applied again and again

array([[ ©.33333333, 0.66666667],
[ 0.5 0.5 1D

[[ 0.44444444 ©.55555556]
[ 0.41666667 ©.583333337]
[[ ©.42592593 ©.57407407]
[ ©.43055556 0.569444447]
[[ 0.42901235 ©.57098765]
[ 0.42824074 ©0.571759267]
[[ ©.42849794 ©.57150206]
[ 0.42862654 0.57137346]]
[[ 0.42858368 ©.57141632]
[ 0.42856224 0.571437767]
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Stationary distribution can be solved for:

Assume that it is s = [p,1 — p|

Then: sT = s
gives us

px(1/3)+(1—p)x1/2=p
and thus p = 3/7

np.dot([0.9,0.1], tm _before): array([ 0.42858153, 0.5/1418471])
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Detailed balance is enough for stationarity

s(z)T'(ylz) = s(y)T'(z|y)

If one sums both sides over z

/dms(m)T(y\m) = s(y) /da:T(a:\y) which gives us back the

stationarity condition from above.
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Posterior predictive from
sampling

e first draw the thetas from the posterior
 then draw y's from the likelihood
e and histogram the likelihood

e these are draws from joint y, 0
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Gibbs Sampling




What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling
through all the particles, drawing from each one of them

conditionally given the energy levels of the others, taking the time
average.

Geman and Geman used this idea to denoise images.
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The idea of Gibbs
f(z) = / F(z, y)dy = / F(zly)(y)dy = / dyf (zly) / iz’ f(yl2') £ (')

Thus: f(z) = /h(w,x')f(x’)dw’ integral fixed point equation

where h(z, ') = / dyf (zly) £ (yl').
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lterative scheme in which the "transition kernel" h(z, z") is used to
create a proposal for metropolis-hastings moves:

f(x:) = /h(mt,mt_l)f(mt_l)dmt_l, a Stationary distribution.

h(z,z') = /dyf(m\y)f(y\w').: Sample alternately to get

transitions.

Can sample & marginal and y|x so can sample the joint z, y.
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Example

Sample from f(z,y) = z*exp[—zy® — y° + 2y — 4x]
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Example:

f(z,y) = ®exp[—zy® — v + 2y — 4a]
— 22exp[—a(y? + 4)]exp[—? + 2y
= g(y)Gamma(z, 3,y* + 4)

— f(z|y) ~ Gamma(3,y” + 4)

f(z,y) = = exp[—y* (1 + z) + 2y|exp[—4«]

1 1
1+2° /(2(1 + z))

)

0 = f(yle) ~ N




Sampler

def xcond(y):
return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
return norm.rvs(1l/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
x=start[0]
y=start[1]
samples=np.zeros((N+1, 2))
samples[0,0]=x
samples[0,1]=y
for i in range(1,N,2):
x=xgiveny sample(y)
samples[1i,0]=x
samples[i, 1]=vy
HUBHHBBHBBHBBHHBBHBBHY
y=ygivenx_sample(x)
samples[i+1,0]=x
samples[i+1l,1]=y
return samples
out=gibbs(xcond, ycond, 100000)
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Ergodicity and Stationarity

e These are not the same concept
e detailed balance implies stationarity. Needs irreducibility.

e aperiodic, irreducible, harris recurrent markov chain —
ergodic

e what is ergodic?
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Ergodicity

e Aperiodic, irreducible, positive Harris recurrent markov chains
are ergodic

e j.e, in the limit of infinite (many) steps, the marginal distribution
of the chain is the same. This means that if we take largely
spaced about (some thinning T) samples from a stationary
markov chain (after burnin B), we can draw independent samples.
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e “Ergodic” law of large numbers:

[s@i@de =5 > g

j=B+1:B+N:T

e equivalent, for very large N:

[ s@) (@)t = 3 ola)

e the jury is out on thinning. Most dont think one needs it

e you can get a similar central limit theorem as well
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Sketch of proof (here and here for details)

by Perron-Frobenius theorem, irreducible, aperiodic stochastic
matrices (rows sum to 1 with non-negative elements) have one
eigenvalue Ay = 1 and positive eigenvector ey > 0. All other
eigenvalues have absolute value less than 1.

¢ p( ) — Tn (0) where p Z oL €;

o Then p(¢) = Zai)\?ei = ey = €
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https://people.eecs.berkeley.edu/~sinclair/cs294/n2.pdf
https://people.eecs.berkeley.edu/~sinclair/cs294/n3.pdf

Metropolis

* probability increases, accept. decreases, accept some of the time.

e get aperiodic, irreducible, harris recurrent markov chain —
ergodic but takes a while to reach the stationary distribution

/dws(m)T(y\x) = /p(y, z)dr = s(y)

e arrange transition matrix(kernel) to get desired stationary
distribution
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Transition matrix for Metropolis:

T(x;|x;i1) = q(x;|x;—1) A(xi, x;-1) + 6(x;_1 — x;)r(x;_1) Where

s(x;)

s(xi_1)

)

A(zi, x;—1) = min(1,
Is the Metropolis acceptance probability and

r(x;) = /dyq(ym)(l — A(y, x;)) is the rejection term.
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Milestone 1: Getting Started

Due Date: Nov 10th

Deliverables: Pick a Paper, form groups
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Milestone 2: Stay on Track

Due Date: Nov 10th thru 22nd.

EARLIER THE BETTER

Deliverables: Present your own short summary of the paper, add
your plan of attack for creating the tutorial, and discuss it with and
gain approval from at least one member of the teaching staff
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Milestone 3: Turn in the final product

Due Date: December 10th

Deliverable: Complete Final Product Tutorial in a notebook
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Which papers and how to work

Link for Papers: Papers
You can propose your own.

Work in teams of 3-4.
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https://docs.google.com/document/d/1N0FjmMHfpX8P__TAzWLQYXqtj_Hbgo839Gu3B0oKOaM

Metropolis-Hastings

e want to handle distributions with limited support
e proposal like normal leads to a lot of wasteful comparisons

e building in rejection breaks symmetry or proposal, the
distribution needs to be normalized by some part of cdf.

e you might want to sample from a asymmetric distribution which
matches targets support
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Metropolis-Hastings

def metropolis hastings(p,q, gdraw, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
for i in range(nsamp):
X_star = qgdraw(x_prev)
p_star p(x_star)
p_prev p(x_prev)
pdfratio = p_star/p prev
proposalratio = gq(x_prev, x_star)/q(x_star, x_prev)

if np.random.uniform() < min(l, pdfratio*proposalratio):

samples[i] = x_star
X_prev = x_star

else:#we always get a sample
samples[i]= x_prev

return samples
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Acceptance Is now

s(x;) X q(xi_1|x;) )

A(zi, z;—1) = min(l, |
( 1) ( s(zi—1) X q(z;|z;i—1)

e correct the sampling of g to match p, corrects for any
asymmetries in the proposal distribution.

e A good rule of thumb is that the proposal has the same or larger
support then the target, with the same support being the best.
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If robot has a greater tendency
to propose steps to the right as ,’
opposed to the left when choosing -

its next step, then the ’

acceptance ratio must
counteract this
tendency.

Suppose the probability of
proposing a spot to the right
is 2/3 (making the probability
of choosing left 1/3)

In this case, the Hastings ratio

decreases the chance of accepting moves to the right by half, and
increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

(from Paul Lewis)



Choice of Proposal

e Our Weibull is: 0.554ze—(*/1:9)°

e Arule of thumb for choosing proposal distributions is to
parametrize them in terms of their mean and variance/precision
since that provides a notion of "centeredness" which we can use
for our proposals

e Use a Gamma Distribution with parametrization
Gamma(zT,1/7) in the shape-scale argument setup.

@AM 207



Gamma-Weibull with traceplot
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Traceplot after burnin but without thinning

0 1000 200 3000 4000 3000 0o 7000 3000
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Traceplot after burning and thinning
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Is thinning needed?

e jury is out but current thought is no
e does reduce space requirements and remove autocorrelation
e but removing autocorrelation is strictly not needed by ergodicity

e but how much burnin do we need? And how many effective
samples?

¢ 5S00n...
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More about gibbs

easiest is to know how to sample
directly from conditionals: no need for
locality

moves one component (or one block) at
a time

all is not lost if thats not the case: can
use a MH-step once stationarity has
been reached

this makes gibbs a very general idea



Fully Bayesian Rat tumors

Joint Posterior:

70 70
p(©,a,8Y,{n:}) x p(e, B) | | Beta(6i, e, B) | | Binom(ns,y;, 6;)
1=1 1=1

Conditionals:

p(0;|yi,n;, o, B) = Beta(a + vy;, B+ n; — ;)
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More Conditionals

p(a]Y,©, 6) o p(a B) ( o)

N
o+
P(81Y,8,0) o pla §) (a2 )
These depend on Y and {n} via the 6's
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Sampling (sampler done in lab)

* Fix o and B, we have a Gibbs step for all of the ;s

 For a and 3, everything else fixed, use stationary metropolis step,
as conditionals are not isolatable to simply sampled distributions

e when we sample for a, we will propose a new value using a
normal proposal, while holding all the 6s and g constant at the

old value. ditto for 8.
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More Gibbs Theory

The transition kernel corresponds to this
proposal:

ar(a*la) = { PIERIT) Tt = 20y
0 otherwise

where az’;c is the kth component (or block)
of z at ith step, while * __is all other
components of z at the same step
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Gibbs=MH with no rejection

A =min(1, v

p(z*) = p(z*,,z}) = p(zi|z* , )p(z* ;)

*
L_p

)p(z*;) qi(z'|z*)

;
L_p

)p(z' ;) gr(z*|z?)

) = min(1

p(z}

*
L_p

)p(z* ) p(at

" p(zt

;
L_p

)p(z* ) p(z}

Componentwise update, — z*, = ', and A is 1!
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Sarrjpling with py.mc3
Diagnostics
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Traceplots and Autocorrelation

e the gibbs joint has very litt

e highly correlated joints wil

autocorrelation

e autocorrelation

have lots of

thinning/longer chains may be required, but

as usual it depends on what you are trying

to calculate.

many more

expectations require far fewer samples

complete posterior characterization require

can come from various sources



Disasters

O = N W A O, o
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UK coal mining disasters, 1851-1962

L, o
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Year




Model

y|T, A1, A2 ~ Poisson(r;)

ry = A if t < Telse Ay fort € [t;, tp]
T ~ DiscreteUni form(t;, ty)

A1 ~ Ezp(a)
A2 ~ Ezxp(b)
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from pymc3.math import switch

with pm.Model() as coaldisl:
early_mean = pm.Exponential('early _mean', 1)
late_mean = pm.Exponential('late_mean', 1)
switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldisl:
stepper=pm.Metropolis()
trace = pm.sample(40000, step=stepper)

100% || 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]
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