
Lecture 16
Gibbs, Metropolis, and MH Samplers

Fully Bayesian Rat tumors

Joint Posterior:

Need to move ALL OVER this posterior. BUT, it is not easy to
sample from.

Ancestral Sampling

• sample from graph, that is from prior, then condi4onal prior, then
data-distribu4on

• but not enough to sample from posterior! What we want to do is
to to restrict all possible samples we got this way by:

• CONDITIONING on the data, and geDng only those samples
consistent with this condi4oning

Basic Idea of Markov Chain Monte Carlo (MCMC)

Move all over by iden.fying with the energy of an
imaginary physical system. Thus .

Move from to via a proposal .

If the new state has lower energy, or higher probability, accept .

If the new state has higher energy, accept , with probability
propor5onal to the ra5o or .

Intui&on

a par%cle approaches typical set and then
gets stuck in it

Instead of sampling p we sample q,
yielding a new state, and a new proposal
distribu7on from which to sample.

Sampling

def metropolis(p, qdraw, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 for i in range(nsamp):
 x_star = qdraw(x_prev)
 p_star = p(x_star)
 p_prev = p(x_prev)
 pdfratio = p_star/p_prev
 if np.random.uniform() < min(1, pdfratio):
 samples[i] = x_star
 x_prev = x_star
 else:#we always get a sample
 samples[i]= x_prev
 return samples

def prop(x):
 return np.random.normal(x, 0.6)

f = lambda x: 6*x*(1-x)
x0=np.random.uniform()
samps = metropolis(f, prop, 1000000, x0)

Bayesian Normal-Normal
Model

logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu: loglike(mu) + logprior(mu)
def prop(x, step):
 return np.random.normal(x, step)
x0=np.random.uniform()
nsamps=40000
samps, acc = metropolis(logpost, prop, 1, nsamps, x0)

Markov Chain

• non IID, stochas-c process

• but one step memory only

• widely applicable, first order equa-ons

 is a transi(on probability, so that .

Sta$onarity

 or or

Con$nuous case: define so that:

 then

Jargon

• Irreducible: can go from anywhere to everywhere

• Aperiodic: no finite loops

• Recurrent: visited repeatedly. Harris recurrent if all states are
visited infinitely as .

Rainy Sunny Markov chain

aperiodic and irreducible

Transi'on matrix, applied again and again

array([[0.33333333, 0.66666667],
 [0.5 , 0.5]])

[[0.44444444 0.55555556]
 [0.41666667 0.58333333]]

[[0.42592593 0.57407407]
 [0.43055556 0.56944444]]

[[0.42901235 0.57098765]
 [0.42824074 0.57175926]]

[[0.42849794 0.57150206]
 [0.42862654 0.57137346]]

[[0.42858368 0.57141632]
 [0.42856224 0.57143776]]

Sta$onary distribu$on can be solved for:

 Assume that it is

Then:

gives us

and thus

np.dot([0.9,0.1], tm_before): array([0.42858153, 0.57141847])

Detailed balance is enough for sta3onarity

If one sums both sides over

 which gives us back the

sta/onarity condi/on from above.

Posterior predic,ve from
sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint

Gibbs Sampling

What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling
through all the par7cles, drawing from each one of them
condi7onally given the energy levels of the others, taking the 7me
average.

Geman and Geman used this idea to denoise images.

The idea of Gibbs

Thus: integral fixed point equa5on

where

Itera&ve scheme in which the "transi&on kernel" is used to
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get

transi1ons.

Can sample marginal and so can sample the joint .

Example

Sample from

Example:

Sampler

def xcond(y):
 return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
 return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
 x=start[0]
 y=start[1]
 samples=np.zeros((N+1, 2))
 samples[0,0]=x
 samples[0,1]=y
 for i in range(1,N,2):
 x=xgiveny_sample(y)
 samples[i,0]=x
 samples[i, 1]=y
 ######################
 y=ygivenx_sample(x)
 samples[i+1,0]=x
 samples[i+1,1]=y
 return samples
out=gibbs(xcond, ycond, 100000)

Ergodicity and Sta.onarity

• These are not the same concept

• detailed balance implies sta3onarity. Needs irreducibility.

• aperiodic, irreducible, harris recurrent markov chain
ergodic

• what is ergodic?

Ergodicity

• Aperiodic, irreducible, posi0ve Harris recurrent markov chains
are ergodic

• i.e., in the limit of infinite (many) steps, the marginal distribu0on
of the chain is the same. This means that if we take largely
spaced about (some thinning T) samples from a sta0onary
markov chain (aBer burnin B), we can draw independent samples.

• “Ergodic” law of large numbers:

• equivalent, for very large N:

• the jury is out on thinning. Most dont think one needs it

• you can get a similar central limit theorem as well

Sketch of proof (here and here for details)

• by Perron-Frobenius theorem, irreducible, aperiodic stochas8c
matrices (rows sum to 1 with non-nega8ve elements) have one
eigenvalue and posi8ve eigenvector . All other
eigenvalues have absolute value less than 1.

• where

• Then

https://people.eecs.berkeley.edu/~sinclair/cs294/n2.pdf
https://people.eecs.berkeley.edu/~sinclair/cs294/n3.pdf

Metropolis

• probability increases, accept. decreases, accept some of the 6me.

• get aperiodic, irreducible, harris recurrent markov chain
ergodic but takes a while to reach the sta$onary distribu$on

• arrange transi+on matrix(kernel) to get desired sta+onary
distribu+on

Transi'on matrix for Metropolis:

 where

is the Metropolis acceptance probability and

 is the rejec*on term.

Papers

Milestone 1: Ge-ng Started

Due Date: Nov 10th

Deliverables: Pick a Paper, form groups

Milestone 2: Stay on Track

Due Date: Nov 10th thru 22nd.

EARLIER THE BETTER

Deliverables: Present your own short summary of the paper, add
your plan of a9ack for crea<ng the tutorial, and discuss it with and
gain approval from at least one member of the teaching staff

Milestone 3: Turn in the final product

Due Date: December 10th

Deliverable: Complete Final Product Tutorial in a notebook

Which papers and how to work

Link for Papers: Papers

You can propose your own.

Work in teams of 3-4.

https://docs.google.com/document/d/1N0FjmMHfpX8P__TAzWLQYXqtj_Hbgo839Gu3B0oKOaM

Metropolis-Has-ngs

• want to handle distribu1ons with limited support

• proposal like normal leads to a lot of wasteful comparisons

• building in rejec1on breaks symmetry or proposal, the
distribu1on needs to be normalized by some part of cdf.

• you might want to sample from a asymmetric distribu1on which
matches targets support

Metropolis-Has-ngs

def metropolis_hastings(p,q, qdraw, nsamp, xinit):
 samples=np.empty(nsamp)
 x_prev = xinit
 for i in range(nsamp):
 x_star = qdraw(x_prev)
 p_star = p(x_star)
 p_prev = p(x_prev)
 pdfratio = p_star/p_prev
 proposalratio = q(x_prev, x_star)/q(x_star, x_prev)
 if np.random.uniform() < min(1, pdfratio*proposalratio):
 samples[i] = x_star
 x_prev = x_star
 else:#we always get a sample
 samples[i]= x_prev

 return samples

Acceptance is now

• correct the sampling of q to match p, corrects for any
asymmetries in the proposal distribu8on.

• A good rule of thumb is that the proposal has the same or larger
support then the target, with the same support being the best.

(from Paul Lewis)

Choice of Proposal

• Our Weibull is:

• A rule of thumb for choosing proposal distribu9ons is to
parametrize them in terms of their mean and variance/precision
since that provides a no9on of "centeredness" which we can use
for our proposals

• Use a Gamma Distribu9on with parametriza9on
 in the shape-scale argument setup.

Gamma-Weibull with traceplot

Traceplot a+er burnin but without thinning

Traceplot a+er burning and thinning

Is thinning needed?

• jury is out but current thought is no

• does reduce space requirements and remove autocorrela8on

• but removing autocorrela8on is strictly not needed by ergodicity

• but how much burnin do we need? And how many effec8ve
samples?

• soon...

More about gibbs

• easiest is to know how to sample
directly from condi5onals: no need for
locality

• moves one component (or one block) at
a 5me

• all is not lost if thats not the case: can
use a MH-step once sta5onarity has
been reached

• this makes gibbs a very general idea

Fully Bayesian Rat tumors

Joint Posterior:

Condi&onals:

More Condi*onals

These depend on and via the 's

Sampling (sampler done in lab)

• Fix and , we have a Gibbs step for all of the s

• For and , everything else fixed, use sta;onary metropolis step,
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a
normal proposal, while holding all the s and constant at the
old value. di?o for .

More Gibbs Theory

The transi+on kernel corresponds to this
proposal:

where is the th component (or block)
of at th step, while is all other
components of at the same step

Gibbs=MH with no rejec2on

Componentwise update, and is 1!

Sampling with pymc3

Diagnos(cs

Traceplots and Autocorrela0on

• the gibbs joint has very li2le autocorrela5on

• highly correlated joints will have lots of
autocorrela5on

• thinning/longer chains may be required, but
as usual it depends on what you are trying
to calculate.

• expecta5ons require far fewer samples

• complete posterior characteriza5on require
many more

• can come from various sources

Model

from pymc3.math import switch
with pm.Model() as coaldis1:
 early_mean = pm.Exponential('early_mean', 1)
 late_mean = pm.Exponential('late_mean', 1)
 switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
 rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
 disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
 stepper=pm.Metropolis()
 trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]

