
Lecture 16
Gibbs, Metropolis, and MH Samplers



Fully Bayesian Rat tumors

Joint Posterior: 

Need to move ALL OVER this posterior. BUT, it is not easy to 
sample from.



Ancestral Sampling

• sample from graph, that is from prior, then condi4onal prior, then 
data-distribu4on

• but not enough to sample from posterior! What we want to do is 
to to restrict all possible samples we got this way by:

• CONDITIONING on the data, and geDng only those samples 
consistent with this condi4oning



Basic Idea of Markov Chain Monte Carlo (MCMC)

Move all over  by iden.fying  with the energy of an 
imaginary physical system. Thus .

Move from  to  via a proposal .

If the new state has lower energy, or higher probability, accept .

If the new state has higher energy, accept , with probability 
propor5onal to the ra5o  or .



Intui&on

a par%cle approaches typical set and then 
gets stuck in it

Instead of sampling p we sample q, 
yielding a new state, and a new proposal 
distribu7on from which to sample.



Sampling 

def metropolis(p, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        if np.random.uniform() < min(1, pdfratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev
    return samples

def prop(x):
    return np.random.normal(x, 0.6)

f = lambda x: 6*x*(1-x)
x0=np.random.uniform()
samps = metropolis(f, prop, 1000000, x0)



Bayesian Normal-Normal 
Model

logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu: loglike(mu) + logprior(mu)
def prop(x, step):
    return np.random.normal(x, step)
x0=np.random.uniform()
nsamps=40000
samps, acc = metropolis(logpost, prop, 1, nsamps, x0)



Markov Chain

• non IID, stochas-c process

• but one step memory only

• widely applicable, first order equa-ons

 is a transi(on probability, so that .



Sta$onarity

 or  or

Con$nuous case: define  so that:

 then



Jargon

• Irreducible: can go from anywhere to everywhere

• Aperiodic: no finite loops

• Recurrent: visited repeatedly. Harris recurrent if all states are 
visited infinitely as .



Rainy Sunny Markov chain

aperiodic and irreducible



Transi'on matrix, applied again and again

array([[ 0.33333333,  0.66666667],
       [ 0.5       ,  0.5       ]])

[[ 0.44444444  0.55555556]
 [ 0.41666667  0.58333333]]
-----------------
[[ 0.42592593  0.57407407]
 [ 0.43055556  0.56944444]]
-----------------
[[ 0.42901235  0.57098765]
 [ 0.42824074  0.57175926]]
-----------------
[[ 0.42849794  0.57150206]
 [ 0.42862654  0.57137346]]
-----------------
[[ 0.42858368  0.57141632]
 [ 0.42856224  0.57143776]]



Sta$onary distribu$on can be solved for:

 Assume that it is 

Then: 

gives us

and thus 

np.dot([0.9,0.1], tm_before): array([ 0.42858153,  0.57141847])



Detailed balance is enough for sta3onarity

If one sums both sides over 

 which gives us back the 

sta/onarity condi/on from above.



Posterior predic,ve from 
sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint 



Gibbs Sampling



What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling 
through all the par7cles, drawing from each one of them 
condi7onally given the energy levels of the others, taking the 7me 
average.

Geman and Geman used this idea to denoise images.



The idea of Gibbs

Thus:  integral fixed point equa5on

where 



Itera&ve scheme in which the "transi&on kernel"  is used to 
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get 

transi1ons.

Can sample  marginal and  so can sample the joint .



Example

Sample from 



Example:



Sampler

def xcond(y):
    return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
    return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
    x=start[0]
    y=start[1]
    samples=np.zeros((N+1, 2))
    samples[0,0]=x
    samples[0,1]=y    
    for i in range(1,N,2):
        x=xgiveny_sample(y)
        samples[i,0]=x
        samples[i, 1]=y
        ######################
        y=ygivenx_sample(x)
        samples[i+1,0]=x
        samples[i+1,1]=y    
    return samples
out=gibbs(xcond, ycond, 100000)



Ergodicity and Sta.onarity

• These are not the same concept

• detailed balance implies sta3onarity. Needs irreducibility.

• aperiodic, irreducible, harris recurrent markov chain  
ergodic

• what is ergodic?



Ergodicity

• Aperiodic, irreducible, posi0ve Harris recurrent markov chains 
are ergodic

• i.e., in the limit of infinite (many) steps, the marginal distribu0on 
of the chain is the same. This means that if we take largely 
spaced about (some thinning T) samples from a sta0onary 
markov chain (aBer burnin B), we can draw independent samples.



• “Ergodic” law of large numbers:

• equivalent, for very large N:

• the jury is out on thinning. Most dont think one needs it

• you can get a similar central limit theorem as well



Sketch of proof (here and here for details)

• by Perron-Frobenius theorem, irreducible, aperiodic stochas8c 
matrices (rows sum to 1 with non-nega8ve elements) have one 
eigenvalue  and posi8ve eigenvector . All other 
eigenvalues have absolute value less than 1.

•  where 

• Then 

https://people.eecs.berkeley.edu/~sinclair/cs294/n2.pdf
https://people.eecs.berkeley.edu/~sinclair/cs294/n3.pdf


Metropolis

• probability increases, accept. decreases, accept some of the 6me.

• get aperiodic, irreducible, harris recurrent markov chain  
ergodic but takes a while to reach the sta$onary distribu$on

• arrange transi+on matrix(kernel) to get desired sta+onary 
distribu+on



Transi'on matrix for Metropolis:

 where

is the Metropolis acceptance probability and

 is the rejec*on term.





Papers



Milestone 1: Ge-ng Started

Due Date: Nov 10th

Deliverables: Pick a Paper, form groups



Milestone 2: Stay on Track

Due Date: Nov 10th thru 22nd.

EARLIER THE BETTER

Deliverables: Present your own short summary of the paper, add 
your plan of a9ack for crea<ng the tutorial, and discuss it with and 
gain approval from at least one member of the teaching staff



Milestone 3: Turn in the final product

Due Date: December 10th

Deliverable: Complete Final Product Tutorial in a notebook



Which papers and how to work

Link for Papers: Papers

You can propose your own.

Work in teams of 3-4.

https://docs.google.com/document/d/1N0FjmMHfpX8P__TAzWLQYXqtj_Hbgo839Gu3B0oKOaM


Metropolis-Has-ngs

• want to handle distribu1ons with limited support

• proposal like normal leads to a lot of wasteful comparisons

• building in rejec1on breaks symmetry or proposal, the 
distribu1on needs to be normalized by some part of cdf.

• you might want to sample from a asymmetric distribu1on which 
matches targets support



Metropolis-Has-ngs

def metropolis_hastings(p,q, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        proposalratio = q(x_prev, x_star)/q(x_star, x_prev)
        if np.random.uniform() < min(1, pdfratio*proposalratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev

    return samples



Acceptance is now

• correct the sampling of q to match p, corrects for any 
asymmetries in the proposal distribu8on.

• A good rule of thumb is that the proposal has the same or larger 
support then the target, with the same support being the best.



(from Paul Lewis)



Choice of Proposal

• Our Weibull is: 

• A rule of thumb for choosing proposal distribu9ons is to 
parametrize them in terms of their mean and variance/precision 
since that provides a no9on of "centeredness" which we can use 
for our proposals

• Use a Gamma Distribu9on with parametriza9on 
 in the shape-scale argument setup.



Gamma-Weibull with traceplot



Traceplot a+er burnin but without thinning



Traceplot a+er burning and thinning



Is thinning needed?

• jury is out but current thought is no

• does reduce space requirements and remove autocorrela8on

• but removing autocorrela8on is strictly not needed by ergodicity

• but how much burnin do we need? And how many effec8ve 
samples?

• soon...



More about gibbs

• easiest is to know how to sample 
directly from condi5onals: no need for 
locality

• moves one component (or one block) at 
a 5me

• all is not lost if thats not the case: can 
use a MH-step once sta5onarity has 
been reached

• this makes gibbs a very general idea



Fully Bayesian Rat tumors

Joint Posterior: 

Condi&onals:



More Condi*onals

These depend on  and  via the 's



Sampling (sampler done in lab)

• Fix  and , we have a Gibbs step for all of the s

• For  and , everything else fixed, use sta;onary metropolis step, 
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a 
normal proposal, while holding all the s and  constant at the 
old value. di?o for .



More Gibbs Theory

The transi+on kernel corresponds to this 
proposal:

where  is the th component (or block) 
of  at th step, while  is all other 
components of  at the same step



Gibbs=MH with no rejec2on

Componentwise update,  and  is 1!



Sampling with pymc3

Diagnos(cs



Traceplots and Autocorrela0on

• the gibbs joint has very li2le autocorrela5on

• highly correlated joints will have lots of 
autocorrela5on

• thinning/longer chains may be required, but 
as usual it depends on what you are trying 
to calculate.

• expecta5ons require far fewer samples

• complete posterior characteriza5on require 
many more

• can come from various sources





Model



from pymc3.math import switch
with pm.Model() as coaldis1:
    early_mean = pm.Exponential('early_mean', 1)
    late_mean = pm.Exponential('late_mean', 1)
    switchpoint = pm.DiscreteUniform('switchpoint', lower=0, upper=n_years)
    rate = switch(switchpoint >= np.arange(n_years), early_mean, late_mean)
    disasters = pm.Poisson('disasters', mu=rate, observed=disasters_data)

with coaldis1:
    stepper=pm.Metropolis()
    trace = pm.sample(40000, step=stepper)

100%|██████████| 40000/40000 [00:12<00:00, 3326.53it/s] | 229/40000 [00:00<00:17, 2289.39it/s]




