Lecture 15

Metropolis and Gibbs Samplers

@AM 207

Rat Tumors

e tumors in female rats of type "F344"
that recieve a particular drug, in 70
different experiments.

e mean and variance of tumor incidence:
0.13600653889043893,

0.010557640623609196

e /1st experiment done: 4 out of 14 rats
develop tumors. Estimate the risk of
tumor in the rats in the 71st experiment

0.00 0.05 0.10 0.15 0.20 0.256 0.30 0.35 0.40

&AM 207

Modeling

p(yz- \02, nz) — Bz’nom(ni, Yi 92)
70
p(Y|O;{n;}) = H Binom(n;, y;, 0;)
1=1

Need to choose a prior p(©).

@AM 207

@ Hyperparameters
b
@ Parameters

B Observations @ @
s=1,....n 1

Plate representation “Unrolled” Graph

@AM 207

Partial pooling: Hierarchical
Model

0;s drawn from "population distribution"
given by a conjugate Beta prior Beta(a, §)

with hyperparameters o and 3.

0; ~ Beta(a, B).

70
p(O|a, B) = H Beta(0;, a, B).
i=1

Priors from data

Where do o and 8 come from?

Why are we calling them hyperparameters?

So far have assumed o and 3 known in priors to be weakly
informative.

New idea: estimate priors from data. Looks like a cross-validation
like setup.

@AM 207

Key ldea: Share statistical strength

e Some units (experiments) statistically more robust

e Non-robust experiments have smaller samples or outlier like
behavior

e Borrow strength from all the data as a whole through the
estimation of the hyperparameters

e regularized partial pooling model in which the "lower"
parameters (0s) tied together by "upper level" hyperparameters.

@AM 207

First idea: estimate directly from data

Posterior-predictive distribution, as a function of upper level
parameters n = («, B).

p(y*|D,n) = / do p(y*|0) p(6| D, n)

A likelihood with parameters n and simply use maximum-likelihood
with respect to n to estimate these n using our "data" ¢

@AM 207

Called Empirical Bayes or Type-2 MLE

« MLE with respect to n

e involves an optimization

e unlike cross-validation, 0s not-yet estimated on training set.
e indeed we marginalize over #s so can use training set.

e |n practice often match moments of predictive or posterior

@AM 207

EB for rats: prior/prior predictive...

Consider the prior expectation and variance:
o af

o a—l—ﬂ’V: (a+ B)?(a+ B+ 1)

Match empirical mean and variance on y; /n;

* Need to be careful what "space" you are working in, predictive (y) or not
e Use prior predictive if in a "predictive space":
p(4") = Eyolpy')] = | dop(y" 10)p(6).

@AM 207

...to posterior/posterior
predictive...

e (a,B)=(1.3777748392916778,
Insert point estimate of a and f 8. 7524354471531129)

NN Conditional posterior distribution for

‘ ' > Given A= and B=p: o : -
@ @ @ ©. ~.. Beta(a, f) ;ac;h of the 8;, given everything else is
eta..

leen A—a and B=fand Y:

@ @ @Q ®, ~.,Beta(atY, f+n-Y)
- p(6;|yi,ni,a, B) = Beta(a + i, B+ n; — i)

@AM 207

posterior means under EB

0.0

0.1

@AM 207

0.2

observed rates

0.3

04

0.5

Shrinkage in rat (tumors)

Posterior estimates shrink towards full
pooling.

Now, for the 71st experiment, we have 4
out of 14 rats having tumors. The
posterior estimate for this would be

o+ Y
a+ B+ nn

4/14, (4+a_est)/(l4+a_est+b_est)
= (0.2857142857142857, 0.22286481449822493)

Full Bayesian

e every optimization is a chance to overfit, would like to use
integration all the way

* specify a hyper-prior p(n) (p(a, B8)) on these hyperparameters 5
(a, B)

* helps us develop a computational strategy of gibbs sampling

e allows estimates of the probabilities of any one unit to borrow
strength from all the data as a whole

@AM 207

Fully Bayesian Rat tumors

Joint Posterior:

70 70
p(©,a,8Y,{n:}) x p(e, B) | | Beta(6i, e, B) | | Binom(ns,y;, 6;)
1=1 1=1

Need to move ALL OVER this posterior. BUT, it is not easy to
sample from.

@AM 207

Ancestral Sampling

e sample from graph, that is from prior, then conditional prior, then
data-distribution

e but not enough to sample from posterior! What we want to do is
to to restrict all possible samples we got this way by:

e CONDITIONING on the data, and getting only those samples
consistent with this conditioning

@AM 207

to the rescue

Basic Idea of Markov Chain Monte Carlo (MCMC(C)

Move all over p by identifying E = —log(p) with the energy of an
imaginary physical system. Thus p = exp(—E).

Move from z; to z; via a proposal q.
If the new state has lower energy, or higher probability, accept z;.

If the new state has higher energy, accept x;, with probability
proportional to the ratio p(z;)/p(x;) or exp(—(E; — E;)).

@AM 207

&AM 207

Today

e markov chains and MCMC
e Metropolis Sampler
e continuous pdf sampling

e discrete pmf sampling

@AM 207

Next Time

e markov chain theory
e metropolis and metropolis hastings
e gibbs sampling

e diaghostics

@AM 207

The Typical Set

Typical dq
Set
n(q) dq

lq - qModeI

&AM 207

Intuition: a particle approaches typical set

16
= True distribution
00 MCMC distribution

14

1.2

o8
06 =
04)
02 . \
00
-1.0 05 00 05 10 15

Instead of sampling p we sample q, yielding a new state, and a new proposal distribution from which to sample.

&AM 207

Metropolis

1. use a proposal distribution to propose a step.

2. Then we calculate the pdf at that step, and compare it to the one
at the previous step.

3. If the probability increased (energy decreased) we accept. If
probability decreased (energy increased) we accept some of the

time.
4. Accumulate our samples.

@AM 207

def metropolis(p, gdraw, nsamp, Xinit):
samples=np.empty(nsamp)
X_prev = xinit
for 1 in range(nsamp):
X_star = gdraw(x_prev)
p_star = p(x_star)
p_prev = p(x_prev)
pdfratio = p _star/p prev
if np.random.uniform() < min(1l, pdfratio):
samples[1] = x_star
X_prev = X _star
else:#we always get a sample
samples[1]= X _prev

return samples

&AM 207

Uniform Proposal to sample the standard gaussian

from scipy.stats import uniform
def propmaker(delta):
rv = uniform(-delta, Z2*delta)
return rv
uni = propmaker(9.5)
def uniprop(xprev):
return xprev+uni.rvs()

@AM 207

Sampling from gaussian with uniform proposal

045
== True distribution

0.40 I MCMC distribution

035
0.30
025
020
015
010

005

0.00
-10 -5 0 5 10

&AM 207

@AM 207

S

Typical dq

Set

m(q) dq

Iq B qModel

Why do this?

Why not rejection? wasteful
more wasteful in higher dimensions

curse of dimensionality in higher
dimensions

volume around mode gets smaller

interplay of density and volume

Curse of dimensionality

L el haoboMabL)_.L.)
/ / / _

&L 0L K

Labobhabaha). -) |

-L)_L.)

as dimensionality increases, center is lower volume, outside has
more volume

@AM 207

Markov Chain

T(xn ‘wn—l y Lp—1- .- 7x1) — T(ajn ‘xn—l)

e non lID, stochastic process
e but one step memory only

e widely applicable, first order equations

T is a transition probability, so that /T(wn\xn_l)dxn_l = 1.

@AM 207

Examples of Markov Chains

e discretized first order differential equations
e snakes and ladders

e page rank

e certain spammy emails

Read about Markov vs Nekrasov here. Basically Markov proved a
law of large humbers for Markov Chains.

@AM 207

https://www.americanscientist.org/article/first-links-in-the-markov-chain

Stationarity

1

Continuous case: define T" so that:

/da:is(a:i)T(xz-H ;) = s(x;11) then

/da:s(x)T(y\x) = /p(y, z)dz = s(y)

@AM 207

Jargon

* Irreducible: can go from anywhere to everywhere
e Aperiodic: no finite loops

 Recurrent: visited repeatedly. Harris recurrent if all states are
visited infinitely as t — oc.

@AM 207

10for'oR0e

Irreducible Reducible

§AM 207 Irreducible, but period 3

Rainy Sunny Markov chain

2/3
1/2
Rainy Sunny
1/2

aperiodic and irreducible

&AM 207

Transition matrix, applied again and again

array([[©.33333333, 0.66666667],
[0.5 0.5 1D

[[0.44444444 ©.55555556]
[0.41666667 ©.583333337]
[[©.42592593 ©.57407407]
[©.43055556 0.569444447]
[[0.42901235 ©.57098765]
[0.42824074 ©0.571759267]
[[©.42849794 ©.57150206]
[0.42862654 0.57137346]]
[[0.42858368 ©.57141632]
[0.42856224 0.571437767]

@AM 207

Stationary distribution can be solved for:

Assume that it is s = [p,1 — p|

Then: sT = s
gives us

px(1/3)+(1—p)x1/2=p
and thus p = 3/7

np.dot([0.9,0.1], tm _before): array([0.42858153, 0.5/1418471])

@AM 207

Stationarity, again

A irreducible (goes everywhere) and aperiodic (no cycles) markov
chain will eventually converge to a stationary markov chain. It is the
marginal distribution of this chain that we want to sample from,

and which we do in metropolis (and for that matter, in simulated
annealing).

/ des(z)T(y|z) = / p(y, z)dz = s(y)

@AM 207

Detailed balance is enough for stationarity

s(z)T'(ylz) = s(y)T'(z|y)

If one sums both sides over z

/dms(m)T(y\m) = s(y) /da:T(a:\y) which gives us back the

stationarity condition from above.

@AM 207

Proposal, redux

e all the positions x in the domain we wish to minimize a function
f over ought to be able to communicate: IRREDUCIBLE

e detailed balance: proposal is symmetric

» ensures {x; } generated by metropolis is a stationary markov
chain with appropriate target.

e make sure proposal distributions are normalized

@AM 207

Are we done?

NO. we want to use law of large numbers. But our samples seem to
be correlated, not IID.

Need a stronger condition, ergodicity.
And need to consider correlation.

And a generalization to asymmetric proposals: Metropolis
Hastings...

@AM 207

Another Example: sampling 6xz(1 — x)

-10

-12
-1.0 0.5 00 05 1.0 15 20

&AM 207

Another Example

def metropolis(p, gdraw, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
for i in range(nsamp):
X_star = gdraw(x_prev)
p_star = p(x_star)

p_prev = p(x_prev)
pdfratio = p_star/p_prev

if np.random.uniform() < min(1l, pdfratio):

samples[i] = x_star
X_prev = x_star
else:#we always get a sample
samples[i]= Xx_prev
return samples

def prop(x):
return np.random.normal(x, ©.6)

f = lambda x: 6*x*(1-x)

x@=np.random.uniform()
samps = metropolis(f, prop, 1000000, x0)

&AM 207

16

== True distribution
0 MCMC distribution

20

MCMC robot's rules

Drastic "off the cliff"
v downhill steps are almost
_ never accepted

Slightly downhill steps -~
are usually accepted -

With these rules, it is easy to
see that the robot tends to
stay near the tops of hills

Uphill steps are
always accepted

(from Paul Lewis)

Tuning the width or precision

Proposal distributions Proposal distributions Disadvantage: robot
with smaller variance... _ with larger variance... often proposes a step
Disadvantage: robot ?akes that would take it off
: smaller steps, more time a cliff, and refuses to
move

required to explore the
same area

Advantage: robot seldom
refuses to take proposed
steps

Advantage: robot can
potentially cover a lot of
ground quickly

(from Paul Lewis)

@AM 207

Discrete distribution MCMC

e proposal distribution becomes proposal matrix
e index the discrete outcomes

e can use symmetric or asymmetric proposal as long as rows sum
tol

e make sure matrix is irreducible: ie you can get from any index to
any other one.

@AM 207

Example: generate poisson

018
016

1/2 1/2 0 0

. 1/2 0 1/2 0 0
| e og=| 0 1/2 0 1/2 0 -
. 0o 0 1/2 0 1/2 --.

006

0.04
0.02 ®

Py =y - - - - -

0.00

@AM 207

018
def prop_draw(ifrom):
016 .
u = np.random.uniform()
if ifrom !=0:
014 if u< 1/2:
ito = ifrom -1
else:
012 ito = ifrom + 1
else:
010 if u.< 1/2:
ito=0
else:
008 ito=1
return ito
0.06 def prop_pdf(ito, ifrom):
if ito == ifrom - 1:
0.04 return 0.5
elif ito == ifrom + 1:
return 0.5
002 elif ito == ifrom and ito == 0:#needed to make first row sum to 1
return 0.5
0.00 - else:
-2 14 16 return 0

&AM 207

Use logs to ensure numerical stability

def metropolis(logp, gdraw, stepsize, nsamp, xinit):
samples=np.empty(nsamp)
X_prev = xinit
accepted = 0
for i in range(nsamp):
X _star = gdraw(x_prev, stepsize)
logp_star = logp(x_star)
Logp _prev = logp(x_prev)
Llogpdfratio = logp_star -logp prev
u = np.random.uniform()
if np.log(u) <= logpdfratio:
samples[i] = x_star
X_prev = X _star
accepted += 1
else:#we always get a sample
samples[i]= x_prev

return samples, accepted

@AM 207

100

&AM 207

10

likelihood (sampling dist)

pnor
postenior

Bayesian Normal-Normal
Model

Logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std _prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
Llogpost = lambda mu: loglike(mu) + logprior(mu)
def prop(x, step):
return np.random.normal(x, step)
x@=np.random.uniform()
nsamps=40000
samps, acc = metropolis(logpost, prop, 1, nsamps, x0)

Posterior predictive from
sampling

e first draw the thetas from the posterior
 then draw y's from the likelihood
e and histogram the likelihood

e these are draws from joint y, 0

&AM 207

16

18

i likelihood (sampling dist)
postenor predictive
posterior

Gibbs Sampling

What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling
through all the particles, drawing from each one of them

conditionally given the energy levels of the others, taking the time
average.

Geman and Geman used this idea to denoise images.

@AM 207

The idea of Gibbs
f(z) = / F(z, y)dy = / F(zly)(y)dy = / dyf (zly) / iz’ f(yl2') £ (')

Thus: f(z) = /h(w,x')f(x’)dw’ integral fixed point equation

where h(z, ') = / dyf (zly) £ (yl').

@AM 207

lterative scheme in which the "transition kernel" h(z, z") is used to
create a proposal for metropolis-hastings moves:

f(x:) = /h(mt,mt_l)f(mt_l)dmt_l, a Stationary distribution.

h(z,z') = /dyf(m\y)f(y\w').: Sample alternately to get

transitions.

Can sample & marginal and x|y so can sample the joint z, y.

@AM 207

Example

Sample from f(z,y) = z*exp[—zy® — y° + 2y — 4x]

&AM 207

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

0.0 0.5 1.0 1.5 2.0

Conditionals

f(z,y) = z?exp[—zy’ — y* + 2y — 4x] = z°exp[—z(y° + 4)]exp[—y* + 2y]
— g(y)Gramlma,(ii,y2 +4) = f(xly) = (}a,mma,(i’»,y2 + 4)

f(z,y) = z°exp[—y* (1 +) + 2ylexp[—4z]

1 1

— f(y\w)=N(1+m, NCEED)

)

@AM 207

Sampler

def xcond(y):
return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
return norm.rvs(1l/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
x=start[0]
y=start[1]
samples=np.zeros((N+1, 2))
samples[0,0]=x
samples[0,1]=y
for i in range(1,N,2):
x=xgiveny sample(y)
samples[1i,0]=x
samples[i, 1]=vy
HUBHHBBHBBHBBHHBBHBBHY
y=ygivenx_sample(x)
samples[i+1,0]=x
samples[i+1l,1]=y
return samples
out=gibbs(xcond, ycond, 100000)

&AM 207

0.5

1.0

1.5

20

2.5

3.0

3.5

40

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

0.0

0.5

@AM 207

1.0

1.5

2.0

More about gibbs

easiest is to know how to sample
directly from conditionals: no need for
locality

moves one component (or one block) at
a time

all is not lost if thats not the case: can
use a MH-step once stationarity has
been reached

this makes gibbs a very general idea

Fully Bayesian Rat tumors

Joint Posterior:

70 70
p(©,a,8Y,{n:}) x p(e, B) | | Beta(6i, e, B) | | Binom(ns,y;, 6;)
1=1 1=1

Conditionals:

p(0;|yi,n;, o, B) = Beta(a + vy;, B+ n; — ;)

@AM 207

More Conditionals

p(a]Y,©, 6) o p(a B) (o)

N
o+
P(81Y,8,0) o pla §) (a2)
These depend on Y and {n} via the 6's

@AM 207

Na+m>N

-

1=1

Sampling (sampler done in lab)

* Fix o and B, we have a Gibbs step for all of the ;s

 For a and 3, everything else fixed, use stationary metropolis step,
as conditionals are not isolatable to simply sampled distributions

e when we sample for a, we will propose a new value using a
normal proposal, while holding all the 6s and g constant at the

old value. ditto for 8.

@AM 207

&AM 207

