
Lecture 15
Metropolis and Gibbs Samplers



Rat Tumors

• tumors in female rats of type "F344" 
that recieve a par8cular drug, in 70 
different experiments.

• mean and variance of tumor incidence: 
0.13600653889043893, 
0.010557640623609196

• 71st experiment done: 4 out of 14 rats 
develop tumors. Es8mate the risk of 
tumor in the rats in the 71st experiment



Modeling

Need to choose a prior .



Par$al pooling: Hierarchical 
Model

s drawn from "popula/on distribu/on" 
given by a conjugate Beta prior  

with hyperparameters  and .



Priors from data

Where do  and  come from?

Why are we calling them hyperparameters?

So far have assumed  and  known in priors to be weakly 
informa7ve.

New idea: es*mate priors from data. Looks like a cross-valida*on 
like setup.



Key Idea: Share sta.s.cal strength

• Some units (experiments) sta1s1cally more robust

• Non-robust experiments have smaller samples or outlier like 
behavior

• Borrow strength from all the data as a whole through the 
es1ma1on of the hyperparameters

• regularized par/al pooling model in which the "lower" 
parameters ( s) 1ed together by "upper level" hyperparameters.



First idea: es+mate directly from data

Posterior-predic,ve distribu,on, as a func,on of upper level 
parameters .

A likelihood with parameters  and simply use maximum-likelihood 
with respect to  to es7mate these  using our "data" 



Called Empirical Bayes or Type-2 MLE

• MLE with respect to 

• involves an op4miza4on

• unlike cross-valida4on, s not-yet es4mated on training set.

• indeed we marginalize over s so can use training set.

• in prac4ce o?en match moments of predic4ve or posterior



EB for rats: prior/prior predic1ve...

Consider the prior expecta0on and variance: 

Match empirical mean and variance on 

• Need to be careful what "space" you are working in, predic:ve ( ) or not

• Use prior predic:ve if in a "predic:ve space":

.



...to posterior/posterior 
predic-ve...

•  = (1.3777748392916778, 
8.7524354471531129)

• Condi)onal posterior distribu)on for 
each of the , given everything else is 
Beta:.



Shrinkage in rat (tumors)

Posterior es)mates shrink towards full 
pooling.

Now, for the 71st experiment, we have 4 
out of 14 rats having tumors. The 
posterior es:mate for this would be

4/14, (4+a_est)/(14+a_est+b_est)
= (0.2857142857142857, 0.22286481449822493)



Full Bayesian

• every op)miza)on is a chance to overfit, would like to use 
integra)on all the way

• specify a hyper-prior  ( ) on these hyperparameters  
( )

• helps us develop a computa)onal strategy of gibbs sampling

• allows es)mates of the probabili)es of any one unit to borrow 
strength from all the data as a whole



Fully Bayesian Rat tumors

Joint Posterior: 

Need to move ALL OVER this posterior. BUT, it is not easy to 
sample from.



Ancestral Sampling

• sample from graph, that is from prior, then condi4onal prior, then 
data-distribu4on

• but not enough to sample from posterior! What we want to do is 
to to restrict all possible samples we got this way by:

• CONDITIONING on the data, and geDng only those samples 
consistent with this condi4oning



MCMC
to the rescue



Basic Idea of Markov Chain Monte Carlo (MCMC)

Move all over  by iden.fying  with the energy of an 
imaginary physical system. Thus .

Move from  to  via a proposal .

If the new state has lower energy, or higher probability, accept .

If the new state has higher energy, accept , with probability 
propor5onal to the ra5o  or .





Today

• markov chains and MCMC

• Metropolis Sampler

• con6nuous pdf sampling

• discrete pmf sampling



Next Time

• markov chain theory

• metropolis and metropolis has4ngs

• gibbs sampling

• diagnos4cs



The Typical Set



Intui&on: a par&cle approaches typical set

Instead of sampling p we sample q, yielding a new state, and a new proposal distribu7on from which to sample.



Metropolis

1. use a proposal distribu0on to propose a step.

2. Then we calculate the pdf at that step, and compare it to the one 
at the previous step.

3. If the probability increased (energy decreased) we accept. If 
probability decreased (energy increased) we accept some of the 
0me.

4. Accumulate our samples.



def metropolis(p, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        if np.random.uniform() < min(1, pdfratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev

    return samples



Uniform Proposal to sample the standard gaussian

from scipy.stats import uniform
def propmaker(delta):
    rv = uniform(-delta, 2*delta)
    return rv
uni = propmaker(0.5)
def uniprop(xprev):
    return xprev+uni.rvs()



Sampling from gaussian with uniform proposal



Why do this?

• Why not rejec-on? wasteful

• more wasteful in higher dimensions

• curse of dimensionality in higher 
dimensions

• volume around mode gets smaller

• interplay of density and volume



Curse of dimensionality

as dimensionality increases, center is lower volume, outside has 
more volume



Markov Chain

• non IID, stochas-c process

• but one step memory only

• widely applicable, first order equa-ons

 is a transi(on probability, so that .



Examples of Markov Chains

• discre(zed first order differen(al equa(ons

• snakes and ladders

• page rank

• certain spammy emails

Read about Markov vs Nekrasov here. Basically Markov proved a 
law of large humbers for Markov Chains.

https://www.americanscientist.org/article/first-links-in-the-markov-chain


Sta$onarity

 or  or

Con$nuous case: define  so that:

 then



Jargon

• Irreducible: can go from anywhere to everywhere

• Aperiodic: no finite loops

• Recurrent: visited repeatedly. Harris recurrent if all states are 
visited infinitely as .





Rainy Sunny Markov chain

aperiodic and irreducible



Transi'on matrix, applied again and again

array([[ 0.33333333,  0.66666667],
       [ 0.5       ,  0.5       ]])

[[ 0.44444444  0.55555556]
 [ 0.41666667  0.58333333]]
-----------------
[[ 0.42592593  0.57407407]
 [ 0.43055556  0.56944444]]
-----------------
[[ 0.42901235  0.57098765]
 [ 0.42824074  0.57175926]]
-----------------
[[ 0.42849794  0.57150206]
 [ 0.42862654  0.57137346]]
-----------------
[[ 0.42858368  0.57141632]
 [ 0.42856224  0.57143776]]



Sta$onary distribu$on can be solved for:

 Assume that it is 

Then: 

gives us

and thus 

np.dot([0.9,0.1], tm_before): array([ 0.42858153,  0.57141847])



Sta$onarity, again

A irreducible (goes everywhere) and aperiodic (no cycles) markov 
chain will eventually converge to a sta:onary markov chain. It is the 
marginal distribu:on of this chain that we want to sample from, 
and which we do in metropolis (and for that ma?er, in simulated 
annealing).



Detailed balance is enough for sta3onarity

If one sums both sides over 

 which gives us back the 

sta/onarity condi/on from above.



Proposal, redux

• all the posi,ons x in the domain we wish to minimize a func,on 
 over ought to be able to communicate: IRREDUCIBLE

• detailed balance: proposal is symmetric

• ensures  generated by metropolis is a sta,onary markov 
chain with appropriate target.

• make sure proposal distribu,ons are normalized



Are we done?

NO. we want to use law of large numbers. But our samples seem to 
be correlated, not IID.

Need a stronger condi.on, ergodicity.

And need to consider correla.on.

And a generaliza,on to asymmetric proposals: Metropolis 
Has,ngs...



Another Example: sampling 



Another Example

def metropolis(p, qdraw, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    for i in range(nsamp):
        x_star = qdraw(x_prev)
        p_star = p(x_star)
        p_prev = p(x_prev)
        pdfratio = p_star/p_prev
        if np.random.uniform() < min(1, pdfratio):
            samples[i] = x_star
            x_prev = x_star
        else:#we always get a sample
            samples[i]= x_prev
    return samples

def prop(x):
    return np.random.normal(x, 0.6)

f = lambda x: 6*x*(1-x)
x0=np.random.uniform()
samps = metropolis(f, prop, 1000000, x0)



(from Paul Lewis)



Tuning the width or precision

(from Paul Lewis)



Discrete distribu,on MCMC

• proposal distribu.on becomes proposal matrix

• index the discrete outcomes

• can use symmetric or asymmetric proposal as long as rows sum 
to 1

• make sure matrix is irreducible: ie you can get from any index to 
any other one.



Example: generate poisson



def prop_draw(ifrom):
    u = np.random.uniform()
    if ifrom !=0:
        if u < 1/2:
            ito = ifrom -1
        else:
            ito = ifrom + 1
    else:
        if u < 1/2:
            ito=0
        else:
            ito=1
    return ito

def prop_pdf(ito, ifrom):
    if ito == ifrom - 1:
        return 0.5
    elif ito == ifrom + 1:
        return 0.5
    elif ito == ifrom and ito == 0:#needed to make first row sum to 1
        return 0.5
    else:
        return 0



Use logs to ensure numerical stability

def metropolis(logp, qdraw, stepsize, nsamp, xinit):
    samples=np.empty(nsamp)
    x_prev = xinit
    accepted = 0
    for i in range(nsamp):
        x_star = qdraw(x_prev, stepsize)
        logp_star = logp(x_star)
        logp_prev = logp(x_prev)
        logpdfratio = logp_star -logp_prev
        u = np.random.uniform()
        if np.log(u) <= logpdfratio:
            samples[i] = x_star
            x_prev = x_star
            accepted += 1
        else:#we always get a sample
            samples[i]= x_prev

    return samples, accepted



Bayesian Normal-Normal 
Model

logprior = lambda mu: norm.logpdf(mu, loc=mu_prior, scale=std_prior)
loglike = lambda mu: np.sum(norm.logpdf(Y, loc=mu, scale=np.std(Y)))
logpost = lambda mu: loglike(mu) + logprior(mu)
def prop(x, step):
    return np.random.normal(x, step)
x0=np.random.uniform()
nsamps=40000
samps, acc = metropolis(logpost, prop, 1, nsamps, x0)



Posterior predic,ve from 
sampling

• first draw the thetas from the posterior

• then draw y's from the likelihood

• and histogram the likelihood

• these are draws from joint 



Gibbs Sampling



What did Gibbs do?

He determined the energy states of gases at equilibrium by cycling 
through all the par7cles, drawing from each one of them 
condi7onally given the energy levels of the others, taking the 7me 
average.

Geman and Geman used this idea to denoise images.



The idea of Gibbs

Thus:  integral fixed point equa5on

where 



Itera&ve scheme in which the "transi&on kernel"  is used to 
create a proposal for metropolis-has&ngs moves:

, a Sta&onary distribu&on.

: Sample alternately to get 

transi1ons.

Can sample  marginal and  so can sample the joint .



Example

Sample from 



Condi&onals



Sampler

def xcond(y):
    return gamma.rvs(3, scale=1/(y*y + 4))
def ycond(x):
    return norm.rvs(1/(1+x), scale=1.0/np.sqrt(2*(x+1)))
def gibbs(xgiveny_sample, ygivenx_sample, N, start = [0,0]):
    x=start[0]
    y=start[1]
    samples=np.zeros((N+1, 2))
    samples[0,0]=x
    samples[0,1]=y    
    for i in range(1,N,2):
        x=xgiveny_sample(y)
        samples[i,0]=x
        samples[i, 1]=y
        ######################
        y=ygivenx_sample(x)
        samples[i+1,0]=x
        samples[i+1,1]=y    
    return samples
out=gibbs(xcond, ycond, 100000)



More about gibbs

• easiest is to know how to sample 
directly from condi5onals: no need for 
locality

• moves one component (or one block) at 
a 5me

• all is not lost if thats not the case: can 
use a MH-step once sta5onarity has 
been reached

• this makes gibbs a very general idea



Fully Bayesian Rat tumors

Joint Posterior: 

Condi&onals:



More Condi*onals

These depend on  and  via the 's



Sampling (sampler done in lab)

• Fix  and , we have a Gibbs step for all of the s

• For  and , everything else fixed, use sta;onary metropolis step, 
as condi;onals are not isolatable to simply sampled distribu;ons

• when we sample for , we will propose a new value using a 
normal proposal, while holding all the s and  constant at the 
old value. di?o for .




