
Lecture 14

The EM algorithm to Hierarchical 
Models



Last Time

• Latent Variables

• Mixture Models

• Supervised vs Unsupervised vs Semi-Supervised Learning

• Missing Data and the EM algorithm



Today

• EM algorithm and the mixture model

• De-Fine6's theorem

• Hierarchical models

• Empirical Bayes



Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

# Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
    sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])



The two meanings of genera0ve

Thus we abuse the world genera)ve in two senses:

1. A way to generate data drom a data story. Here think of 

2. A Model in which we try to figure  or . Here think of 
 or a class label.

Now lets focus on the la/er. Suppose we believe their exists a 
"class" or representa9on . Then a dichotomy arises depending on 
whether  is observed or not.



Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:



GMM supervised formula1on

, 

Full-data loglike: 





Solu%on to MLE



Supervised graph



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



Unsupervised graph



EXPECTATION
MAXIMIZATION
calculate MLE es,mates for the incomplete data problem by using the 
complete-data likelihood. To create complete data, augment the 
observed data with manufactured data



Toy Example: 2D Gaussian

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82
means=np.array([mu1, mu2])
cov = np.array([
    [sig1**2, sig1*sig2*rho],
    [sig2*sig1*rho, sig2**2]
])

Lose z = 20 y-values. Set to 0.



Voila. We converge to stable values of our 
parameters. Ini7als:

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82

But they may not be the ones we seeded 
the samples with. The EM algorithm is 
only good upto finding local minima, and a 
finite sample size also means that the 
minimum found can be slightly different.



The EM algorithm, conceptually

• itera've method for maximizing difficult likelihood (or posterior) 
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its 
condi'onal expecta'on given current observed data and 
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).



Why does it work?

where the  and  range over the mul0ple points in your data set.

Then x-data log-likelihood .

Hard to maximize for us.



Assume  has some normalized distribu2on:

.

We wish to compute condi0onal expecta0ons of the type:

but we dont know this "posterior" (henceforth ).

Lets say we somehow know .



Consider KL loss func0on



x-data likelihood

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence



• KL divergence only 0 when  exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO  is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of : 



E-step conceptually

Choose at some (possibly ini1al) value of 
the parameters ,

then KL divergence = 0, and thus  = 
log-likelihood at , maximizing the 
ELBO.

Condi&oned on observed data, and , 
we use  to conceptually compute the 
expecta&on of the missing data.



E-step: what we actually do

Compute the Auxilary func4on, , the expected (with 
respect to the z-posterior) complete(full) data log likelihood, defined 
by:

or the expecta+on of the ELBO instead of . Thus 2 parts:

(a) Iden%fy  (b) compute .



M-step

A"er E-step, ELBO touches , any 
maximiza:on wrt  will also “push up” on 
likelihood, thus increasing it.

Thus hold  fixed at the z-posterior 
calculated at , and maximize ELBO 

 or  wrt  to obtain 
new .

In general , hence KL 
. Thus increase in  increase in 

ELBO.



Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate  
which gives rise to  or 

(blue curve) whose value 
equals the value of  at .

2. M-step: maximize  or  wrt  to 
get .

3. Set 



An itera)on:

The first equality follows since  is a lower bound on , the second 
from the M-step's maximiza>on of , and the last from the 
vanishing of the KL-divergence aCer the E-step.

As a consequence, you must observe monotonic increase of the 
observed-data log likelihood  across itera:ons. This is a powerful 
debugging tool for your code.



EM is local only!

Note that as shown above, since each EM itera3on can only 
improve the likelihood, you are guaranteeing convergence to a local 
maximum. Because it IS local , you must try some different ini3al 
values of  and take the one that gives you the largest .



GMM: E-step

E-step: Calculate 

Compute: 



E-step: calculate responsibili2es

We are basically calcula-ng the posterior of the 's given the 's 
and the current es-mate of our parameters. We can use Bayes rule



M-step: mazimize Q

Taking deriva,ves yields following upda,ng formulas:



def Estep(x, mu, sigma, lam):
    a = lam * norm.pdf(x, mu[0], sigma[0])
    b = (1. - lam) * norm.pdf(x, mu[1], sigma[1])
    return b / (a + b)

def Mstep(x, w):
    lam = np.mean(1.-w)

    mu = [np.sum((1-w) * x)/np.sum(1-w), np.sum(w * x)/np.sum(w)]

    sigma = [np.sqrt(np.sum((1-w) * (x - mu[0])**2)/np.sum(1-w)),
             np.sqrt(np.sum(w * (x - mu[1])**2)/np.sum(w))]

    return mu, sigma, lam



0.4 [2, 5] [0.6, 0.6]
Initials, mu: [-4.85176052  5.51133343]
Initials, sigma: [ 2.02807915  3.58912888]
Initials, lam: 0.5418931691319009
Iterations 71
A: N(2.0261, 0.5936)
B: N(5.0083, 0.6288)
lam: 0.5884

0.4 [2, 5] [0.6, 0.6]
Initials, mu: [ 11.09643621  -4.48315085]
Initials, sigma: [ 4.31750531  0.95518757]
Initials, lam: 0.5767814041950222
Iterations 103
A: N(5.0083, 0.6288)
B: N(2.0261, 0.5936)
lam: 0.4116



Compared to supervised classifica2on and k-means

• M-step formulas vs GDA we can see that are very similar except 
that instead of using  func=ons we use the 's.

• Thus the EM algorithm corresponds here to a weighted maximum 
likelihood and the weights are interpreted as the 'probability' of 
coming from that Gaussian

• Thus we have achieved a so# clustering (as opposed to k-means 
in the unsupervised case and classifica=on in the supervised case).



• kmeans is HARD EM. Instead of 
calcula9ng  in e-step, use mode of  
posterior. Also the case with 
classifica9on

• finite mixture models suffer from 
mul9modality, non-iden9fiability, and 
singularity. They are problema9c but 
useful

• models can be singular if cluster has 
only one data point: overfiIng

• add in prior to regularise and get MAP. 
Add log(prior) in M-step only



Exchangeability

Think of our poisson based college/no-college problem.

Lets assume that the number of children of a women in any one of these 
classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a permuta7on of 
variables.

This is really a statement about what is exchangeable and what is not.

It depends on how much knowledge you have...



Back to Joint Densi.es

• even if we never calculate it, we must consider the joint density  

• Lets just focus for a bit on . This must capture the type of dependence 
assumed among the .

• one assump=on could be that these data are IID. BUT more generally consider that 
the labels or subscripts are uninforma=ve

• that is, , for all permuta=ons .

• A sequence of random quan==es is said to be exchangeable if this property holds for 
every finite subset of them (Bernardo)



De-Fine''s Representa0on Theorem

For exchangeable , there exists a parametric model, , labeled by 
some parameter : 

• which is the  limit of some func0on  of the ’s, and 

• There exists a probability distribu0on for , with density , such that 
we get an infinite mixture:



That is, quo,ng Bernardo, 

if a sequence of observa/ons is judged to be exchangeable, then, any finite 
subset of them is a random sample of some model , and there exists 

a prior distribu/on  which has to describe the ini/ally available 
informa/on about the parameter which labels the model.

That is, exchageability demands a likelihood with condi6onally 
independent observa6ons, and these observa6ons:

must indeed be a random sample from some model and there must exist a 
prior probability distribu4on over the parameter of the model, hence 

REQUIRING a Bayesian approach



De Fine'’s theorem helps dispel the mystery of where the prior belief 
over the chances comes from. From exchangeable degrees of belief, de 
Fine' recovers both the chance sta=s=cal model of coin flipping and 
the Bayesian prior probability over the chances. The mathema=cs of 
induc=ve inference is just the same. If you were worried about where 
Bayes’ priors came from, if you were worried about whether chances 

exist, you can forget your worries. De Fine' has replaced them with a 
symmetry condi=on on degrees of belief. This is, we think you will agree, 

a philosophically sensa=onal result.

From Diaconis, Persi; Skyrms, Brian. Ten Great Ideas about Chance 
(Page 124). Princeton University Press.



HIERARCHICAL MODELS



Rat Tumors

• tumors in female rats of type "F344" 
that recieve a par8cular drug, in 70 dif
ferent experiments.

• mean and variance of tumor incidence: 
0.13600653889043893, 
0.0105576406236091
96

• 71st experiment done: 4 out of 14 rats 
develop tumors. Es8mate the risk of tu
mor in the rats in the 71st experiment



Tumors data



Modeling

Need to choose a prior .



No Pooling

Separate priors on each :

Very overfit model with 210 parameters. VARIANCE!



Full Pooling

Assume that there is only one  in the problem, and set an prior on 
it.

Ignores any varia-on amongst the sampling units other than 
sampling variance.

Underfit model with 3 params. BIAS



Par$al pooling: Hierarchical 
Model

s drawn from "popula/on distribu/on" 
given by a conjugate Beta prior  

with hyperparameters  and .



Why is this ok?

Suppose we have several sequences of data , each assumed to dependent 
separately on sufficient sta9s9cs , ie:

Then the representa+on theorem looks like:



If one has , then one can recursively use De-Fine6's 
theorem for each :

Bernardo:

hence, the parameter values which correspond to each sequence may be seen 
as a random sample from some parameter popula8on with density , 

and there must exist a prior distribu8on  describing the ini8al 
informa8on about the hyperparameter  which labels .



• De-Fine( tells us that in the limit of infinite data points exchangeability at the  
level is captured as an infinite mixture of IID distribu>ons

• First proved for infinite data points but subsequently proved approximately for 
finite number of points

• o@en observa>ons are only par>ally or condi>onally exchangeable. This helps when 
we want to model groups.

• if  has accompanying co-variates , so that  are not exchangeable, but the pair 
are, then we make a joint model for the pair  or a condi>onal model for 

.

• We write then: 



Priors from data

Where do  and  come from?

Why are we calling them hyperparameters?

So far have assumed  and  known in priors to be weakly 
informa7ve.

New idea: es*mate priors from data. Looks like a cross-valida*on 
like setup.



Key Idea: Share sta.s.cal strength

• Some units (experiments) sta1s1cally more robust

• Non-robust experiments have smaller samples or outlier like 
behavior

• Borrow strength from all the data as a whole through the 
es1ma1on of the hyperparameters

• regularized par/al pooling model in which the "lower" 
parameters ( s) 1ed together by "upper level" hyperparameters.



Another Example: Kidney cancers



First idea: es+mate directly from data

Posterior-predic,ve distribu,on, as a func,on of upper level 
parameters .

A likelihood with parameters  and simply use maximum-likelihood 
with respect to  to es7mate these  using our "data" 



Called Empirical Bayes or Type-2 MLE

• MLE with respect to 

• involves an op4miza4on

• unlike cross-valida4on, s not-yet es4mated on training set.

• indeed we marginalize over s so can use training set.

• in prac4ce o?en match moments of predic4ve or posterior



EB for rats: prior/prior predic1ve...

Consider the prior expecta0on and variance: 

Match empirical mean and variance on 

• Need to be careful what "space" you are working in, predic:ve ( ) or not

• Use prior predic:ve if in a "predic:ve space":

.



...to posterior/posterior 
predic-ve...

•  = (1.3777748392916778, 
8.7524354471531129)

• Condi)onal posterior distribu)on for 
each of the , given everything else is 
Beta:.



Shrinkage in rat (tumors)

Posterior es)mates shrink towards full 
pooling.

Now, for the 71st experiment, we have 4 
out of 14 rats having tumors. The 
posterior es:mate for this would be

4/14, (4+a_est)/(14+a_est+b_est)
= (0.2857142857142857, 0.22286481449822493)



Hierarchy organizes exchangeability

• we use the no+on of exchangeability at the level of 'units'.

• for our rats, the  were exchangeable since we had no addi+onal 
informa+on about experimental condi+ons.

• if specific groups of experiments came from specific laboratories, 
assume experiments interchangeable if from the same lab.

• lab specific  and  parameters

• add another level of hierarchy to draw these from hyperprior.



Levels of Bayes




