Lecture 14

The EM algorithm to Hierarchical
Models
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Last Time

e |atent Variables
e Mixture Models
e Supervised vs Unsupervised vs Semi-Supervised Learning

e Missing Data and the EM algorithm
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Today

e EM algorithm and the mixture model
e De-Finetti's theorem
e Hierarchical models

e Empirical Bayes
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Gaussian Mixture Model

p(@|{6:}) = 3 AN (@|pak, i)
k

Generative:

mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])

n = 10000

# Simulate from each distribution according to mixing proportion psi

z = multinomial.rvs(1l, lambda_ true, size=n) #categorical

x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, o, ©],[9, @, 1],...[1, @, @],[1, @, @]])



The two meanings of generative

Thus we abuse the world generative in two senses:
1. A way to generate data drom a data story. Here think of z = 6

2. A Model in which we try to figure p(x, z) or p(x|z). Here think of
z = c or a class label.

Now lets focus on the latter. Suppose we believe their exists a
"class” or representation z. Then a dichotomy arises depending on
whether z is observed or not.
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Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables z are observed.

In other words, we can write the full-data likelihood p(x, z)

In Unsupervised Learning, Latent Variables z are hidden.

We can only write the observed data likelihood:
- Yr) = Y pla)o(xla)
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GMM supervised formulation

Z ~ Bernoulli(\)
X|Z =0~ N(MQ,ZQ), X‘Z =1~ N(ul,Zl)

Full-data loglike: [(z, 2|\, o, p1,3) = — ZlOg((ZW)n/2|Z|1/2)
i=1

m

_%i(x_“’%)T E_l(x_.u'zz‘)_l_ - [Z’i logA_l_(l_zz)lOg(l_}\)]

1=1 1
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1(2;)
2 (mz)
L=1]]6G,

i )logG ()
L= 1(z)
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Solution to MLE

Ho = Z%}L 00
Zizl 2,0

p1 Z:% 02, 21
Zz’zl Ziy1



Supervised graph

/
-
4 %3
assignment_tr ~ Categorical
. 20/
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Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U, )p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.
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Unsupervised graph

v

o

obs ~ Normal

0DSs

aYa

/
<assignment_tr ~ Categorical>

o

centers ~ N ormaD

—

\

sds ~ Unifoer

—————

2

20/
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EXPECTATION
MAXIMIZATION

calculate MLE estimates for the incomplete data problem by using the
complete-data likelihood. To create complete data, augment the
observed data with manufactured data
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Toy Example: 2D Gaussian

X1i | ind
¥ hu.ﬁv; M1 ’ (:
X2i M2
sigl=1
sig2=0.75
mul=1.85
mu2=1
rho=0.82

means=np.array([mul, mu2])
cov = np.array([
[sigl**2, sigl¥sig2*rho],
[sig2*sigl*rho, sig2**2]
D

Lose z = 20 y-values. Set to O.
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Voila. We converge to stable values of our
parameters. Initials:

sigl=1
sig2=0.75
mul=1.85
muZ=1
rho=0.82

But they may not be the ones we seeded
the samples with. The EM algorithm is
only good upto finding local minima, and a
finite sample size also means that the
minimum found can be slightly different.
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The EM algorithm, conceptually

e jterative method for maximizing difficult likelihood (or posterior)
problems, first introduced by Dempster, Laird, and Rubin in 1977

e Sorta like, just assign points to clusters to start with and iterate.

e Then, at each iteration, replace the augmented data by its
conditional expectation given current observed data and
parameter estimates. (E-step)

 Maximize the full-data likelihood (M-step).
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Why does it work?

p(z|0) = Zp z, z|0)

where the x and z range over the multiple points in your data set.

Then x-data log-likelihood £(z|0) = log p(z|0) = log Zp(ag, z|6).
Hard to maximize for us.
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Assume z has some normalized distribution:
z ~ q(z).

We wish to compute conditional expectations of the type:
Ey e 2]

but we dont know this "posterior" (henceforth p).

Lets say we somehow know g.
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Consider KL loss function

KL(q|lp) = Dx1(q,p) = E, [log%] - _E, [log%]

B P 210)
DKL(Qap) — Eq[l g qp(ww)

|

(, 2|6)
q

Dt (a,p) = — (Eq[wgp | Eq[Zogp(a:wn)
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x-data likelihood

(, 2|6)
q

logp(z|0) = E, [logp | + Dkr(q,p)

If we define the ELBO or Evidence Lower
bound as:

x, z|0)
q

£(q,0) = E,llog? =2,

then log p(z|#) = ELBO + KL-divergence
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e KL divergence only O when p = g exactly everywhere
e minimizing KL means maximizing ELBO

 ELBO L(q,0) is a lower bound on the log-likelihood.

 ELBO is average full-data likelihood minus entropy of g:

p(z, z|0)

L(q,0) = E,|log ;

| = Eq4|logp(z, 2|0)] — E4llogq
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E-step conceptually

Choose at some (possibly initial) value of

KL(g||p) =0

the parameters 6,4, f
q(2) = p(z|z,004),
then KL divergence = O, and thus L(q, 6) =
log-likelihood at 8,;;, maximizing the
ELBO. £(g,6°) In p(X|6°)
Conditioned on observed data, and 6,4, ¥ ¥

we use g to conceptually compute the
expectation of the missing data.
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E-step: what we actually do

Compute the Auxilary function, Q(6, 1)), the expected (with
respect to the z-posterior) complete(full) data log likelihood, defined
by:

Q(0, e(t_l)) — EZ|Y=y,@:9t—1 logp(z, 2|6))
or the expectation of the ELBO instead of Q). Thus 2 parts:

(a) Identify ¢ = p(z | =, 0,4) (b) compute Q = E,[logp(z, z|6)].

@AM 207



@AM 207

M-step

After E-step, ELBO touches £(z|8), any

maximization wrt @ will also “push up” on
likelihood, thus increasing it.

Thus hold ¢(z) fixed at the z-posterior

calculated at 8,;;, and maximize ELBO
L(q,0,0,4) or Q(q,0,0,;) wrt 8 to obtain
new 0,,.,,-

In general ¢(0,,50 # p(z|x, Orew ), hence KL

# 0. Thus increase in £(x|0) > increase in
ELBO.



Process

1. Start with p(z|6)(red curve), 6,4.

2. Until convergence:

1. E-step: Evaluate ¢(z, 6,15) = p(z|z, 0,14)
which gives rise to Q(0, 0,4) or
ELBO(0, 0,4 )(blue curve) whose value
equals the value of p(z|0) at 6,4.

2. M-step: maximize Q or ELBO wrt 8 to
get 0,00 -

3. Set O,y = 0. T g
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An iteration:

£(0111) > L(q(2,0:),0:11) > L(q(z,6¢),0;) = £(6;)

The first equality follows since L is a lower bound on ¢, the second
from the M-step's maximization of £, and the last from the
vanishing of the KL-divergence after the E-step.

As a consequence, you must observe monotonic increase of the
observed-data log likelihood ¢ across iterations. This is a powerful
debugging tool for your code.
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EM is local only!

Note that as shown above, since each EM iteration can only
improve the likelihood, you are guaranteeing convergence to a local
maximum. Because it IS local , you must try some different initial
values of 6,;; and take the one that gives you the largest /.
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E-step: Calculate w; ; = ¢;(z;

Compute: Q = Z Z i (2;) log v
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|
s ~[M]

LL

q;

w

GMM: E-step

7) = p(z; = j|Ti, Aods Hold s 2old)

(wia 2 |)‘7 22 2)

qi (Zz)

p(zi|zi = j, p, X)p(2i = j|A)

z; = 7) log ,
( ) q; (Zz' — J)

| (271_)17,/21|2j|1/2 eXP(_%(a’z “J)sz H(i :“J)) Aj
b 108 Wi, j




E-step: calculate responsibilities

We are basically calculating the posterior of the z's given the z's
and the current estimate of our parameters. We can use Bayes rule

Ws; 4 = p(Zz — ]lxza >\0ld7 Hold 5 Eold) —

p(xz' ‘Zi — j7 Hold 2]old)p(zz' — j‘)‘old)
Zle p(xi|zi =1, potd, Xo1d) P(2: = | Aoid)
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M-step: mazimize Q

Taking derivatives yields following updating formulas:
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def Estep(x, mu, sigma, Lam):
a = lam * norm.pdf(x, mu[@], sigma[@])
b = (1. - Llam) * norm.pdf(x, mu[l], sigma[l])
return b / (a + b)

def Mstep(x, w):
Lam = np.mean(1l.-w)

mu = [np.sum((1-w) * x)/np.sum(l-w), np.sum(w * x)/np.sum(w) ]

sigma = [np.sqgrt(np.sum((1l-w) *¥ (X - mu[@])**2)/np.sum(1l-w)),
np.sqrt(np.sum(w * (x - mu[1])**2)/np.sum(w)) ]

return mu, sigma, Lam
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0.4 [2, 5] [0.6, 0.6]

Initials, mu: [-4.85176052 5.51133343]
Initials, sigma: [ 2.02807915 3.58912888]
Initials, lam: 0.5418931691319009
Iterations /1

A: N(2.0261, 0.5936)

B: N(5.0083, 0.6288)

Lam: 0.5884

0.4 [2, 5] [0.6, 0.6]

Initials, mu: [ 11.09643621 -4.48315085]
Initials, sigma: [ 4.31750531 0©.95518/57]
Initials, lam: 0.5767814041950222
ITterations 103

A: N(5.0083, 0.6288)

B: N(2.0261, 0.5936)

Lam: 0.4116
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Compared to supervised classification and k-means

e M-step formulas vs GDA we can see that are very similar except
that instead of using § functions we use the w's.

 Thus the EM algorithm corresponds here to a weighted maximum
likelihood and the weights are interpreted as the 'probability' of
coming from that Gaussian

 Thus we have achieved a soft clustering (as opposed to k-means
in the unsupervised case and classification in the supervised case).
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e kmeans is HARD EM. Instead of
calculating Q) in e-step, use mode of z
posterior. Also the case with
classification

e finite mixture models suffer from
multimodality, non-identifiability, and plz)
singularity. They are problematic but
useful

e models can be singular if cluster has
only one data point: overfitting

e add in prior to regularise and get MAP.
Add log(prior) in M-step only
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Exchangeability

Think of our poisson based college/no-college problem.

Lets assume that the number of children of a women in any one of these
classes can me modelled as coming from ONE birth rate.

The in-class likelihood for these women is invariant to a permutation of
variables.

This is really a statement about what is exchangeable and what is not.
It depends on how much knowledge you have...
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Back to Joint Densities

e even if we never calculate it, we must consider the joint density p(z4,...,z,, 0, ¢, etc)

 Lets just focus for a bit on p(«1, ..., z,). This must capture the type of dependence
assumed among the z;.

e one assumption could be that these data are [ID. BUT more generally consider that
the labels or subscripts are uninformative

o thatis, p(z1,...,2n) = (%), - - - Trm)), fOr all permutations .

* A sequence of random quantities is said to be exchangeable if this property holds for
every finite subset of them (Bernardo)
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De-Finetti's Representation Theorem

For exchangeable {x; }, there exists a parametric model, p(x|0), labeled by
some parameter 0 € O:

 which is the n — oo limit of some function F' of the z;’s, and

* There exists a probability distribution for 6, with density p(8), such that
we get an infinite mixture:

plars-vza) = [ f[pm 0)p(6)d(6)
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That is, quoting Bernardo,

if a sequence of observations is judged to be exchangeable, then, any finite
subset of them is a random sample of some model p(x; | ), and there exists

a prior distribution p(6) which has to describe the initially available
information about the parameter which labels the model.

That is, exchageability demands a likelihood with conditionally
iIndependent observations, and these observations:

must indeed be a random sample from some model and there must exist a
prior probability distribution over the parameter of the model, hence
REQUIRING a Bayesian approach
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De Finetti’s theorem helps dispel the mystery of where the prior belief
over the chances comes from. From exchangeable degrees of belief, de
Finetti recovers both the chance statistical model of coin flipping and
the Bayesian prior probability over the chances. The mathematics of
inductive inference is just the same. If you were worried about where
Bayes’ priors came from, if you were worried about whether chances
exist, you can forget your worries. De Finetti has replaced them with a

symmetry condition on degrees of belief. This is, we think you will agree,

a philosophically sensational resulkt.

From Diaconis, Persi; Skyrms, Brian. Ten Great ldeas about Chance
(Page 124). Princeton University Press.
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HIERARCHICAL MODELS



Rat Tumors

e tumors in female rats of type "F344"
that recieve a particular drug, in 70 dif
ferent experiments.

e mean and variance of tumor incidence:
0.13600653889043893,
0.0105576406236091
96

e /1st experiment done: 4 out of 14 rats
develop tumors. Estimate the risk of tu
000 005 010 015 020 025 030 035 040 mor in the rats in the 71st experiment
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Modeling

p(yz- \02, nz) — Bz’nom(ni, Yi 92)
70
p(Y|O;{n;}) = H Binom(n;, y;, 0;)
1=1

Need to choose a prior p(©).
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No Pooling

Separate priors on each 6;:

97; ~ Beta(ai, ,Bz)

70
p(©{a:},{B:}) = | | Beta(6i,u, B:),
i=1
Very overfit model with 210 parameters. VARIANCE!
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Full Pooling

Assume that there is only one 6 in the problem, and set an prior on
It.

lgnores any variation amongst the sampling units other than
sampling variance.

Underfit model with 3 params. BIAS
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6, 62 05
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Partial pooling: Hierarchical
Model

0;s drawn from "population distribution"
given by a conjugate Beta prior Beta(a, §)

with hyperparameters o and 3.

0; ~ Beta(a, B).

70
p(O|a, B) = H Beta(0;, a, B).
i=1



Why is this ok?

Suppose we have several sequences of data x;, each assumed to dependent
separately on sufficient statistics t;, ie

m
p(x17 o« o 7xn) — Hp(xz ‘ tz)
i
Then the representation theorem looks like:

p(x1,..., / HHp X | 6;)p 0, )d0;. .. dO,,

1=1 5=
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If one has p;(x | ;) = p(x | 6;), then one can recursively use De-Finetti's
theorem for each 6;:

P61, 100 = [ ﬁpwz-  O)p(#)d()

Bernardo:

hence, the parameter values which correspond to each sequence may be seen
as a random sample from some parameter population with density p(0 | ¢),

and there must exist a prior distribution p(¢) describing the initial
information about the hyperparameter ¢ which labels p(6 | ¢).
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e De-Finetti tells us that in the limit of infinite data points exchangeability at the 6
level is captured as an infinite mixture of |ID distributions

e First proved for infinite data points but subsequently proved approximately for
finite number of points

e often observations are only partially or conditionally exchangeable. This helps when
we want to model groups.

e if y; has accompanying co-variates z;, so that y; are not exchangeable, but the pair
are, then we make a joint model for the pair («;, y;) or a conditional model for

 We write then: p(64,..,0, | z;,..,x,) = /[Hp(é?j | &, z;)|p(¢ | z)dd
J
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Priors from data

Where do o and 8 come from?

Why are we calling them hyperparameters?

So far have assumed o and 3 known in priors to be weakly
informative.

New idea: estimate priors from data. Looks like a cross-validation
like setup.
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Key ldea: Share statistical strength

e Some units (experiments) statistically more robust

e Non-robust experiments have smaller samples or outlier like
behavior

e Borrow strength from all the data as a whole through the
estimation of the hyperparameters

e regularized partial pooling model in which the "lower"
parameters (0s) tied together by "upper level" hyperparameters.
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Another Example: Kidney cancers

0.0005
0.0004 -

0.0003 -

0.0002 -

pct_mortality

0.0001 4 e

0.0000  mmm—————

-0.0001
0 100000 200000 300000 400000 500000 600000 700000

pop
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First idea: estimate directly from data

Posterior-predictive distribution, as a function of upper level
parameters n = («, B).

p(y*|D,n) = / do p(y*|0) p(6| D, n)

A likelihood with parameters n and simply use maximum-likelihood
with respect to n to estimate these n using our "data" ¢
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Called Empirical Bayes or Type-2 MLE

« MLE with respect to n

e involves an optimization

e unlike cross-validation, 0s not-yet estimated on training set.
e indeed we marginalize over #s so can use training set.

e |n practice often match moments of predictive or posterior
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EB for rats: prior/prior predictive...

Consider the prior expectation and variance:
o af

o a—l—ﬂ’V: (a+ B)?(a+ B+ 1)

Match empirical mean and variance on y; /n;

* Need to be careful what "space" you are working in, predictive (y) or not
e Use prior predictive if in a "predictive space":
p(4") = Eyolpy' )] = | dop(y" 10)p(6).
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Insert point estimate of a and f

Given A=a and B=4:
®, ~,., Beta(a, f)

Given A=a and B=f and Y

@ . O, ~;4 Beta(a+Y, f+n-Y)
P

...to posterior/posterior
predictive...

o (a,B) =(1.3777748392916778,

8.7/524354471531129)

e Conditional posterior distribution for
each of the 6, given everything else is
Beta:.

p(0;|yi, ni, o, B) = Beta(a + y;, B+ 1 — ¥;)




posterior means under EB

0.0

0.1
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0.2

observed rates

0.3

04

0.5

Shrinkage in rat (tumors)

Posterior estimates shrink towards full
pooling.

Now, for the 71st experiment, we have 4
out of 14 rats having tumors. The
posterior estimate for this would be

o+ Y
a+ B+ nn

4/14, (4+a_est)/(l4+a_est+b_est)
= (0.2857142857142857, 0.22286481449822493)



Hierarchy organizes exchangeability

e we use the notion of exchangeability at the level of 'units’.

 forourrats, the y; were exchangeable since we had no additional
Information about experimental conditions.

e |f specific groups of experiments came from specific laboratories,
assume experiments interchangeable if from the same lab.

e lab specific oy, and G, parameters
 add another level of hierarchy to draw these from hyperprior.
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Levels of Bayes

Method Definition

Maximum Likelihood f = argmazyp(D)6)

MAP estimation 6 = argmazyp(D|6)p(6|n)

ML-2 (Empirical Bayes) = 7 = argmaz, [dfp(D|0)p(8|n) = argmaz,p(D|n)

MAP-2 il = argmaz, [ d6p(D|0)p(0|n)p(n) = argmaz,p(D|n)p(n)

Full Bayes p(0,n|D) o< p(D|0)p(6|n)p(n)
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