
Lecture 13

Classifica(on and the EM algorithm



Last Time

• Logis'c Regression, MLP, and Backprop 

• Universal Approxima'on

• Learning Representa'ons



Today

• Latent Variables

• Mixture Models

• Supervised vs Unsupervised vs Semi-Supervised Learning

• Missing Data and the EM algorithm

• EM algorithm and the mixture model



PROBABILISTIC 
CLASSIFICATION

Model  [ )]

or  [ ].



DISCRIMINATIVE CLASSIFIER



Half moon dataset (ar/ficially GENERATED)



Discrimina)ve Learning

• are these classifiers any good?

• they are discrimina4ve and draw boundaries, but thats it

• they are cheaper to calculate but shed no insight

• would it not be be;er to have a classifier that captured the 
genera4ve process



GENERATIVE CLASSIFIER



Representa)on Learning

• the idea of genera.ve learning is to capture an underlying representa.on 
(compressed) of the data

• in the previous slide it was 2 normal distribu.ons

• generally more complex, but the idea if to fit a "genera.ve" model whose parameters 
represent the process

• wait, we've been doing this in our bayesian or condi.onal-on-data-marginalize-over-
all-else paradigm

• besides gpus and autodiff on backprop, this is the third pillar of the AI rennaissance: 
the choice of beHer representa.ons: e.g. convolu.ons



Ok, so how do we model (simple) representa5ons. We've been 
doing it already....

Latent
Variables

that we marginalize over!



• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood  vs par2al data likelihood 

• with  we have the standard Bayesian scenario, but consider  now to 
be some hidden representa2on

• For regression/classifica2on "  or ", full data likelihood is supervised 
learning with par2al being unsupervised learning

• observed variables  correspond to data, and latent variables  to classes/
parameters



From edwardlib docs: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



Mixture Models mo.va.on

•  as "classes" in a classifica,on problem leads to a genera,ve 
classifier

• but in general, that iden,fica,on is very strong, indeed  may 
just be a representa,on



Mixture Models

A distribu*on  is a mixture of  
component distribu*ons  if:

with the  being mixing weights, , 
.

Example: Zero Inflated Poisson



Genera&ve Model: How to simulate from it?

where  says which component X is drawn from.

Thus  is the probability that the hidden class variable .

Then:  and general structure is:

 .



Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

# Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
    sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])



The two meanings of genera0ve

Thus we abuse the world genera)ve in two senses:

1. A way to generate data drom a data story. Here think of 

2. A Model in which we try to figure  or . Here think of 
 or a class label.

Now lets focus on the la/er. Suppose we believe their exists a 
"class" or representa9on . Then a dichotomy arises depending on 
whether  is observed or not.



Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:



GMM supervised formula1on

, 

Full-data loglike: 



Solu%on to MLE



Classifica(on

We can use the log likelihood at a given x as a classifier: assign 
class depending upon which probability  is larger. 
(JUST  likelihood, as we want to compare probabiliAes at fixed s).

The first term of the likelihood does not ma2er since it is 
independent of .



Bayesian Supervised

with pm.Model() as classmodel1:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    #Notice the "observed" below
    assignment_tr = pm.Categorical("assignment_tr", p,
                                observed=ztr)
    sds = pm.Uniform("sds", 0, 100, shape=2)
    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)
    p_min_potential = pm.Potential('lam_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
    order_centers_potential = pm.Potential('order_centers_potential',
                                         tt.switch(centers[1]-centers[0] < 0, -np.inf, 0))

    # and to combine it with the observations:
    observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)



Supervised graph



Mixture Model as Genera0ve Classifier

For a feature vector , we use Bayes rule to express the posterior 
of the class-condi9onal or component-condi9onal ("c") as:

This is a genera&ve classifier, since it specifies how to generate the 
data using the class-condi6onal density  and the class 
prior .



Genera&ve vs Discrimina&ve classifiers

• LDA vs logis,c respec,vely.

• Both have "genera,ve" bayesian models:  or . 
Here think of 

• LDA is genera,ve as it models  while logis,c models  
directly. Here think of 

• we do know  on the training set, so think of the unsupervised 
learning counterparts of these models where you dont know 



Genera&ve vs Discrimina&ve classifiers (contd)

• genera've handles data asymmetry be2er

• some'mes genera've models like LDA and Naive Bayes are easy to fit. Discrimina've models require 
convex op'miza'on via Gradient descent

• can add new classes to a genera've classifier without retraining so be2er for online customer selec'on 
problems

• genera've classifiers can handle missing data easily

• genera've classifiers are be2er at handling unlabelled training data (semi-supervized learning)

• preprocessing data is easier with discrimina've classifiers

• discrimina've classifiers give generally be2er callibrated probabili'es

• discrimina've usually less expensive





Unsupervised: How many clusters ?



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



Bayesian Unsupervised
with pm.Model() as ofmodel:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment_tr = pm.Categorical("assignment_tr", p,
                    shape=ztr.shape[0])
    sds = pm.Uniform("sds", 0, 100, shape=2)

    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)

    # and to combine it with the observations:
    observations = pm.Normal("obs", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)



Unsupervised graph



Semi-supervised learning

We have some labels, but typically very few labels: not enough to form a 
good training set. Likelihood a combina=on.

Here  ranges over the data points where we have labels, and  over the 
data points where we dont.



Semi-supervised learning

Basic Idea: there is structure in  which might help us divine the 
condi7onals, thus combine full-data and -likelihood.

Include  on the valida/on set in the likelihood, and  and  on the 
training set in the likelihood.

Has been very useful for Naive Bayes.



Bayesian Semi-Supervised

with pm.Model() as classmodel2:
    p1 = pm.Uniform('p', 0, 1)
    p2 = 1 - p1
    p = tt.stack([p1, p2])
    assignment_tr = pm.Categorical("assignment_tr", p,
                                observed=ztr)
    # we do not know the assignments for the rest
    assignment_rest_tr = pm.Categorical("assignment_rest_tr", p,
                                shape=xte.shape[0])
    sds = pm.Uniform("sds", 0, 100, shape=2)
    centers = pm.Normal("centers",
                        mu=np.array([130, 170]),
                        sd=np.array([20, 20]),
                        shape=2)

    # and to combine it with the observations:
    observations_tr = pm.Normal("obs_tr", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)
    observations_te = pm.Normal("obs_rest_tr", mu=centers[assignment_rest_tr], sd=sds[assignment_rest_tr], observed=xte)



Semi-supervised graph



EXPECTATION
MAXIMIZATION
calculate MLE es,mates for the incomplete data problem by using the 
complete-data likelihood. To create complete data, augment the 
observed data with manufactured data



Toy Example: 2D Gaussian

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82
means=np.array([mu1, mu2])
cov = np.array([
    [sig1**2, sig1*sig2*rho],
    [sig2*sig1*rho, sig2**2]
])

Lose z = 20 y-values. Set to 0.



MLE for full data problem

mu1 = lambda s: np.mean(s[:,0])
mu2 = lambda s: np.mean(s[:,1])
s1 = lambda s: np.std(s[:,0])
s2 = lambda s: np.std(s[:,1])
rho = lambda s: np.mean((s[:,0] - mu1(s))*(s[:,1]
    - mu2(s)))/(s1(s)*s2(s))

But we dont have full data.

Use Censored data with ini/al imputa/on



M-step: Maximizing full-data MLE

mu1s.append(mu1(samples_censored))
mu2s.append(mu2(samples_censored))
s1s.append(s1(samples_censored))
s2s.append(s2(samples_censored))
rhos.append(rho(samples_censored))

M-step done. Use these parameters let us calculate new y-values.

Replace the old-missing-y values (0s) with the means of these fixing 
the parameters of the mul=-variate normal and the non-missing data.



E-step

Use expecta*on from hidden-data posterior distrib: 

This posterior distribu+on (in the sense of bayes theorem, not 
bayesian analysis) for the mul+-variate gaussian is a gaussian..see 
wikipedia for the formulae

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions


Iterate

def ynew(x, mu1, mu2, s1, s2, rho):
    return mu2 + rho*(s2/s1)*(x - mu1)

newys=ynew(samples_censored[20:,0], mu1s[0], mu2s[0], s1s[0], s2s[0], rhos[0])

for step in range(1,20):
    samples_censored[20:,1] = newys
    #M-step
    mu1s.append(mu1(samples_censored))
    mu2s.append(mu2(samples_censored))
    s1s.append(s1(samples_censored))
    s2s.append(s2(samples_censored))
    rhos.append(rho(samples_censored))
    #E-step
    newys=ynew(samples_censored[20:,0], mu1s[step], mu2s[step], s1s[step], s2s[step], rhos[step])



Voila. We converge to stable values of our 
parameters. Ini7als:

sig1=1
sig2=0.75
mu1=1.85
mu2=1
rho=0.82

But they may not be the ones we seeded 
the samples with. The EM algorithm is 
only good upto finding local minima, and a 
finite sample size also means that the 
minimum found can be slightly different.



The EM algorithm, conceptually

• itera've method for maximizing difficult likelihood (or posterior) 
problems, first introduced by Dempster, Laird, and Rubin in 1977

• Sorta like, just assign points to clusters to start with and iterate.

• Then, at each itera'on, replace the augmented data by its 
condi'onal expecta'on given current observed data and 
parameter es'mates. (E-step)

• Maximize the full-data likelihood (M-step).



Why does it work?

where the  and  range over the mul0ple points in your data set.

Then x-data log-likelihood .

Hard to maximize for us.



Assume  has some normalized distribu2on:

.

We wish to compute condi0onal expecta0ons of the type:

but we dont know this "posterior" (henceforth ).

Lets say we somehow know .



Consider KL loss func0on



x-data likelihood

If we define the ELBO or Evidence Lower 
bound as:

then  = ELBO + KL-divergence



• KL divergence only 0 when  exactly everywhere

• minimizing KL means maximizing ELBO

• ELBO  is a lower bound on the log-likelihood.

• ELBO is average full-data likelihood minus entropy of : 



E-step conceptually

Choose at some (possibly ini1al) value of 
the parameters ,

then KL divergence = 0, and thus  = 
log-likelihood at , maximizing the 
ELBO.

Condi&oned on observed data, and , 
we use  to conceptually compute the 
expecta&on of the missing data.



E-step: what we actually do

Compute the Auxilary func4on, , the expected 
complete(full) data log likelihood, defined by:

or the expecta+on of the ELBO instead of .



M-step

A"er E-step, ELBO touches , any 
maximiza:on wrt  will also “push up” on 
likelihood, thus increasing it.

Thus hold  fixed at the z-posterior 
calculated at , and maximize ELBO 

 or  wrt  to obtain 
new .

In general , hence KL 
. Thus increase in  increase in 

ELBO.



Process

1. Start with (red curve), .

2. Un6l convergence:

1. E-step: Evaluate  
which gives rise to  or 

(blue curve) whose value 
equals the value of  at .

2. M-step: maximize  or  wrt  to 
get .

3. Set 



An itera)on:

The first equality follows since  is a lower bound on , the second 
from the M-step's maximiza>on of , and the last from the 
vanishing of the KL-divergence aCer the E-step.

As a consequence, you must observe monotonic increase of the 
observed-data log likelihood  across itera:ons. This is a powerful 
debugging tool for your code.



EM is local only!

Note that as shown above, since each EM itera3on can only 
improve the likelihood, you are guaranteeing convergence to a local 
maximum. Because it IS local , you must try some different ini3al 
values of  and take the one that gives you the largest .



GMM

E-step: Calculate 

M-step: maximize: 



M-step

Taking deriva,ves yields following upda,ng formulas:



E-step: calculate responsibili2es

We are basically calcula-ng the posterior of the 's given the 's 
and the current es-mate of our parameters. We can use Bayes rule

Where  is the density of the Gaussian with mean 
 and covariance  at  and  is simply .



def Estep(x, mu, sigma, lam):
    a = lam * norm.pdf(x, mu[0], sigma[0])
    b = (1. - lam) * norm.pdf(x, mu[1], sigma[1])
    return b / (a + b)

def Mstep(x, w):
    lam = np.mean(1.-w)

    mu = [np.sum((1-w) * x)/np.sum(1-w), np.sum(w * x)/np.sum(w)]

    sigma = [np.sqrt(np.sum((1-w) * (x - mu[0])**2)/np.sum(1-w)),
             np.sqrt(np.sum(w * (x - mu[1])**2)/np.sum(w))]

    return mu, sigma, lam



0.4 [2, 5] [0.6, 0.6]
Initials, mu: [-4.85176052  5.51133343]
Initials, sigma: [ 2.02807915  3.58912888]
Initials, lam: 0.5418931691319009
Iterations 71
A: N(2.0261, 0.5936)
B: N(5.0083, 0.6288)
lam: 0.5884

0.4 [2, 5] [0.6, 0.6]
Initials, mu: [ 11.09643621  -4.48315085]
Initials, sigma: [ 4.31750531  0.95518757]
Initials, lam: 0.5767814041950222
Iterations 103
A: N(5.0083, 0.6288)
B: N(2.0261, 0.5936)
lam: 0.4116



Compared to supervised classifica2on and k-means

• M-step formulas vs GDA we can see that are very similar except 
that instead of using  func=ons we use the 's.

• Thus the EM algorithm corresponds here to a weighted maximum 
likelihood and the weights are interpreted as the 'probability' of 
coming from that Gaussian

• Thus we have achieved a so# clustering (as opposed to k-means 
in the unsupervised case and classifica=on in the supervised case).



• kmeans is HARD EM. Instead of 
calcula9ng  in e-step, use mode of  
posterior. Also the case with 
classifica9on

• finite mixture models suffer from 
mul9modality, non-iden9fiability, and 
singularity. They are problema9c but 
useful

• models can be singular if cluster has 
only one data point: overfiIng

• add in prior to regularise and get MAP. 
Add log(prior) in M-step only


