Lecture 13
Classification and the EM algorithm

@AM 207

Last Time

e |ogistic Regression, MLP, and Backprop
e Universal Approximation

e |earning Representations

@AM 207

Today

e Latent Variables

 Mixture Models

e Supervised vs Unsupervised vs Semi-Supervised Learning
e Missing Data and the EM algorithm

e EM algorithm and the mixture model

@AM 207

PROBABILISTIC .
CLASSIFICATION =

Model P(y|x) [P(c|z))] Fe

or P(z|y) [P(x|c)]. 5

50 100 150 200 250
Weight

@AM 207

DISCRIMINATIVE CLASSIFIER

P(y|z)orP(c|z) : P(male|lheight,weight)

75 75 -
70 70
=
D
O
65 I 65
60
60
) 55 Y77
55 - B ' i
- 100 150 200 250
100 150 200 250 Weight

@AM 207

o

MLP(

(fc_initial): Linear(in_features=2, g
(fc_mid): ModuleList(
)

) .
{'Ir': 0.1, 'epochs': 1000, ‘batch_size

" 64}

@AM 207

Num Params: 6
o B
’ -
-
. T
n
a
L, L aCE, © -
° @
o i ° ™~
o . |
. @ =1
= m
® >
n*G; .
onE ‘e T
e ml
“
=] 9009
o
°
2

Half moon dataset (artificially GENERATED

ut_features=2) 2

b
o¥

MLP(

(fc_initial): Linear(in_features=2, ¢

(fc_mid): ModuleList(
(0): Linear(in_features=20, out_f;
)

(fc_final): Linear(in_features=20, d
) .

{'Ir': 0.1, "epochs’: 1000, 'batch_size
Num Params: 522

ut_features=20)
batures=20)

ut_features=2)

" 64}

o
(]
.. ©
n
a
® o
L By % -
L] L
n
o ° '~
0 |
-] - =1
- o
. L]
e® o [D
R
a L]
o B te
-
-
il |
a9
m
-
L]
T

Discriminative Learning

e are these classifiers any good?
e they are discriminative and draw boundaries, but thats it
e they are cheaper to calculate but shed no insight

 would it not be better to have a classifier that captured the
generative process

@AM 207

GENERATIVE CLASSIFIER

P(y|z) o< P(x|y)P(z) : P(height,weight/male) x P(male)

75
70

65

85

100 150 200 250

@AM 207

Representation Learning

e the idea of generative learning is to capture an underlying representation
(compressed) of the data

e in the previous slide it was 2 normal distributions

e generally more complex, but the idea if to fit a "generative" model whose parameters
represent the process

e wait, we've been doing this in our bayesian or conditional-on-data-marginalize-over-
all-else paradigm

e besides gpus and autodiff on backprop, this is the third pillar of the Al rennaissance:
the choice of better representations: e.g. convolutions

@AM 207

Ok, so how do we model (simple) representations. We've been

Latent
Variables

that we marginalize over!

@AM 207

e instead of bayesian vs frequentist, think hidden vs not hidden

» key concept: full data likelihood p(x, z) vs partial data likelihood
p(x) = » p(x|z)p(z)
e with z = 6 we have the standard Bayesian scenario, but consider z now to

be some hidden representation

e For regression/classification "z = y or ¢, full data likelihood is supervised
learning with partial being unsupervised learning

e observed variables x correspond to data, and latent variables z to classes/
parameters

@AM 207

From edwardlib docs: p(x | z)

describes how any data x depend on the latent variables z.

 The likelihood posits a data generating process, where the data
x are assumed drawn from the likelihood conditioned on a
particular hidden pattern described by z.

* The prior p(z) is a probability distribution that describes the

latent variables present in the data. The prior posits a generating
process of the hidden structure.

@AM 207

Mixture Models motivation

e 7 as "classes" in a classification problem leads to a generative
classifier

e butin general, that identification is very strong, indeed z may
just be a representation

@AM 207

Figure 3

~ Dirichletx(a)

~ Discrete(6)

~ Mz, 1)

~ N0, 6})

(@) A graphical model for a mixture of two Gaussians. There are three data points. The shaded nodes are
observed variables, the unshaded nodes are hidden variables, and the blue square boxes are fixed
hyperparameters (such as the Dirichlet parameters). () A graphical model for a mixture of K Gaussians with

N data points.

@AM 207

Mixture Models

A distribution p(z|{6}) is a mixture of K
component distributions py, ps, ... px if:

p(x{6r}) = Mepr(x|0k)
k

with the)\, being mixing weights, A\, > 0,

Z)\kzl.
k

Example: Zero Inflated Poisson

Generative Model: How to simulate from it?

Z ~ Categorical(Ai, A2, . .., Ag)

where Z says which component X is drawn from.

Thus); is the probability that the hidden class variable z = j.

Then: X ~ p,(x|0,) and general structure is:

p(z|{0:}) ZP z, z) Zp p(x|z,0,)

@AM 207

035

030

025

020

015

010

005

&AM 207

Gaussian Mixture Model

p(@|{6:}) = 3 AN (@|pak, i)
k

Generative:

mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])

n = 10000

Simulate from each distribution according to mixing proportion psi

z = multinomial.rvs(1l, lambda_ true, size=n) #categorical

x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, o, ©],[9, @, 1],...[1, @, @],[1, @, @]])

The two meanings of generative

Thus we abuse the world generative in two senses:
1. A way to generate data drom a data story. Here think of z = 6

2. A Model in which we try to figure p(x, z) or p(x|z). Here think of
z = c or a class label.

Now lets focus on the latter. Suppose we believe their exists a
"class” or representation z. Then a dichotomy arises depending on
whether z is observed or not.

@AM 207

Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables z are observed.

In other words, we can write the full-data likelihood p(x, z)

In Unsupervised Learning, Latent Variables z are hidden.

We can only write the observed data likelihood:
- Yr) = Y pla)o(xla)

@AM 207

GMM supervised formulation

Z ~ Bernoulli(\)
X|Z =0~ N(MQ,ZQ), X‘Z =1~ N(ul,Zl)

Full-data loglike: [(z, 2|\, o, p1,3) = — ZlOg((ZW)n/2|Z|1/2)
i=1

m

%i(x“’%)T E_l(x_.u'zz‘)_l_ - [Z’i logA_l_(l_zz)lOg(l_}\)]

1=1 1

@AM 207

@AM 207

Solution to MLE

Ho = Z%}L 00
Zizl 2,0

p1 Z:% 02, 21
Zz’zl Ziy1

Classification

We can use the log likelihood at a given x as a classifier: assign
class depending upon which probability p(z;|A, z, X) is larger.
(JUST z likelihood, as we want to compare probabilities at fixed zs).

m

1 _
logp(a;|A, 2 T) Zlog ()" 2[S[2) = 53 (@ —)T 27 (@ — pa)
1=1

The first term of the likelihood does not matter since it is
independent of 2.

@AM 207

Bayesian Supervised

with pm.Model() as classmodell:
pl = pm.Uniform('p', @, 1)
p2 =1 - pl
p = tt.stack([pl, p2])
#Notice the "observed" below
assignment tr = pm.Categorical("assignment tr'", p,
observed=ztr)
sds = pm.Uniform('"sds", 0, 100, shape=2)
centers = pm.Normal('"centers",
mu=np.array([130, 1/0]),
sd=np.array([20, 20]),
shape=2)
p_min_potential = pm.Potential('lam min potential', tt.switch(tt.min(p) < .1, -np.inf, 0))
order_ centers _potential = pm.Potential('order centers potential',
tt.switch(centers[l]-centers[0] < @, -np.inf, ©))

and to combine it with the observations:
observations = pm.Normal("obs'", mu=centers[assignment_tr], sd=sds[assignment_tr], observed=xtr)

@AM 207

Supervised graph

/
-
4 %3
assignment_tr ~ Categorical
. 20/

@AM 207

Mixture Model as Generative Classifier

For a feature vector x, we use Bayes rule to express the posterior
of the class-conditional or component-conditional ("c") as:

p(z = c|f)p(z|z = ¢, 6)
2. P(z=c0)p(z|z = c’,0)

p(z =cl|z,0) =

This is a generative classifier, since it specifies how to generate the
data using the class-conditional density p(z|z = ¢, 8) and the class
prior p(z = c|0).

@AM 207

Generative vs Discriminative classifiers

e |LDA vs logistic respectively.

» Both have "generative" bayesian models: p(c|z, 8) or p(y|x, 8).
Here think of z = 6

* LDA is generative as it models p(x|c) while logistic models p(c|x)
directly. Here think of z = ¢

e we do know ¢ on the training set, so think of the unsupervised
learning counterparts of these models where you dont know ¢

@AM 207

Generative vs Discriminative classifiers (contd)

e generative handles data asymmetry better

e sometimes generative models like LDA and Naive Bayes are easy to fit. Discriminative models require
convex optimization via Gradient descent

e can add new classes to a generative classifier without retraining so better for online customer selection
problems

e generative classifiers can handle missing data easily

e generative classifiers are better at handling unlabelled training data (semi-supervized learning)
e preprocessing data is easier with discriminative classifiers

e discriminative classifiers give generally better callibrated probabilities

e discriminative usually less expensive

@AM 207

&AM 207

Learning

/

ERM/Discriminant

bayesian

e

Discriminative

More Modelling

Generative

How many clusters z?

Unsupervised

300

300

250

250

200

o
&

150

150

100

100

75

70

65

55

75

70

65

55

&AM 207

Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U,)p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.

@AM 207

Bayesian Unsupervised

with pm.Model() as ofmodel:
pl = pm.Uniform('p', @, 1)
p2 =1 - pl
p = tt.stack([pl, p2])
assignment tr = pm.Categorical("assignment tr", p,
shape=ztr.shape[0])
sds = pm.Uniform("sds", @, 100, shape=2)

centers = pm.Normal('"centers",
mu=np.array([1360, 1/0]),
sd=np.array([20, 20]),
shape=2)

and to combine it with the observations:
observations = pm.Normal("obs'", mu=centers[assignment tr], sd=sds[assignment tr], observed=xtr)

@AM 207

Unsupervised graph

v

o

obs ~ Normal

0DSs

aYa

/
<assignment_tr ~ Categorical>

o

centers ~ N ormaD

—

\

sds ~ Unifoer

—————

2

20/

@AM 207

Semi-supervised learning

We have some labels, but typically very few labels: not enough to form a
good training set. Likelihood a combination.

({zi}, {z;}, {2116, \) = Y _logp(zi, |A,0) +) logp(z;|X, 0)
= Z log p(zi|A\)p(z;|2,0) + Z log > p(zj|A\)p(z;|z;,0)

Here ¢ ranges over the data points where we have labels, and j over the
data points where we dont.

@AM 207

Semi-supervised learning

Basic Idea: there is structure in p(a) which might help us divine the
conditionals, thus combine full-data and x-likelihood.

Include z on the validation set in the likelihood, and £ and z on the
training set in the likelihood.

Has been very useful for Naive Bayes.

@AM 207

Bayesian Semi-Supervised

with pm.Model() as classmodel2:
pl = pm.Uniform('p', @, 1)
p2 =1 - pl
p = tt.stack([pl, p2])
assignment _tr = pm.Categorical('"assignment tr", p,
observed=ztr)
we do not know the assignments for the rest
assignment rest tr = pm.Categorical('"assignment rest tr", p,
shape=xte.shape[0])
sds = pm.Uniform("sds", @, 100, shape=2)
centers = pm.Normal('"centers",
mu=np.array([130, 1/0]),
sd=np.array([20, 20]),
shape=2)

and to combine it with the observations:
observations_tr = pm.Normal('"obs tr", mu=centers[assignment tr], sd=sds[assignment_tr], observed=xtr)
observations_te = pm.Normal('"obs_rest_tr", mu=centers[assignment_rest_tr], sd=sds[assignment_rest_tr], observed=xte)

@AM 207

Semi-supervised graph

/

stignment_rest tr ~ CategoricD

obs rest_tr ~ Normal ;

aYa

p ~ Uniform

|

\

e

\

2

—
\
?f@ Gssignment_tr ~ CategoricaD

480

@AM 207

-

2,

EXPECTATION
MAXIMIZATION

calculate MLE estimates for the incomplete data problem by using the
complete-data likelihood. To create complete data, augment the
observed data with manufactured data

@AM 207

Toy Example: 2D Gaussian

X1i | ind
¥ hu.ﬁv; M1 ’ (:
X2i M2
sigl=1
sig2=0.75
mul=1.85
mu2=1
rho=0.82

means=np.array([mul, mu2])
cov = np.array([
[sigl**2, sigl¥sig2*rho],
[sig2*sigl*rho, sig2**2]
D

Lose z = 20 y-values. Set to O.

&AM 207

2
04
0102p0

0102p0
2
03

)

3.0

N

0

1.5

1.0

0.5

MLE for full data problem

mul = lambda s: np.mean(s[:,0])
mu2 = lambda s: np.mean(s[:,1])
sl = lambda s: np.std(s[:,9])
s2 = lambda s: np.std(s[:,1])

40 40
., = /40, [i, = : /40, rho = lambda s: np.mean((s[:,0] - mul(s))*(s[:,1]
H X,:x‘/ " Xl:xz/ - mu2($)))/(s1(s)*s2(s))

40 1/2 40 1/2
5y = [Z (x1; — fi1)? /40] 6, = [E (i — ﬁ2)2/40] , But we dont have full data.
1

40 Use Censored data with initial imputation
p= |:Z (x1i — 1) (x2i — f12) /40] /(5152),

1

@AM 207

M-step: Maximizing full-data MLE

muls.append(mul(samples censored))
muls.append(mul2(samples censored))
sls.append(sl(samples censored))
s2s.append(sZ2(samples censored))
rhos.append(rho(samples censored))

M-step done. Use these parameters let us calculate new y-values.

Replace the old-missing-y values (0s) with the means of these fixing
the parameters of the multi-variate normal and the non-missing data.

@AM 207

E-step
Use expectation from hidden-data posterior distrib: E, 4 ,) (2

This posterior distribution (in the sense of bayes theorem, not
bayesian analysis) for the multi-variate gaussian is a gaussian..see
wikipedia for the formulae

gt +1) — h2(t) = p(t) - :

@AM 207

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions

Iterate

def ynew(x, mul, mu2, sl, s2, rho):
return mu2 + rho*(s2/sl)*(x - mul)

newys=ynew(samples censored[20:,0], muls[@], mul2s[0@], sls[@], s2s[0], rhos[0O])

for step in range(1,20):
samples _censored[20:,1] = newys
#M-step
muls.append(mul(samples _censored))
muls.append(mu2(samples _censored))
sls.append(sl(samples censored))
s2s.append(s2(samples_censored))
rhos.append(rho(samples_censored))
#E-step
newys=ynew(samples censored[20:,0], muls[step], mul2s[step], sls[step], sZ2s[step], rhos[step])

@AM 207

Voila. We converge to stable values of our
parameters. Initials:

sigl=1
sig2=0.75
mul=1.85
muZ=1
rho=0.82

But they may not be the ones we seeded
the samples with. The EM algorithm is
only good upto finding local minima, and a
finite sample size also means that the
minimum found can be slightly different.

@AM 207

mui

mu2

rho

s1

s2

1.966883

0.662900

0.522613

1.185731

0.889247

1.966883

0.949428

0.850340

1.185731

0.782217

1.966883

1.073320

0.926036

1.185731

0.811543

1.966883

1.126917

0.941491

1.185731

0.837711

1.966883

1.150122

0.945313

1.185731

0.851228

1.966883

1.160180

0.946476

1.185731

0.857421

1.966883

1.164547

0.946888

1.185731

0.860139

1.966883

1.166447

0.947048

1.185731

0.861307

1.966883

1.167277

0.947113

1.185731

0.861801

© | OO N OO0 SN

1.966883

1.167641

0.947139

1.185731

0.862008

—
o

1.966883

1.167802

0.947150

1.185731

0.862092

-
—h

1.966883

1.167874

0.947154

1.185731

0.862125

-h
N

1.966883

1.167907

0.947156

1.185731

0.862137

-
w

1.966883

1.167922

0.947156

1.185731

0.862141

—
=S

1.966883

1.167929

0.947157

1.185731

0.862142

—
(&)

1.966883

1.167933

0.947157

1.185731

0.862142

J
(o)}

1.966883

1.167934

0.947156

1.185731

0.862142

—k
-J

1.966883

1.167935

0.947156

1.185731

0.862141

-
@

1.966883

1.167936

0.947156

1.185731

0.862141

—
o

1.966883

1.167936

0.947156

1.185731

0.862141

The EM algorithm, conceptually

e jterative method for maximizing difficult likelihood (or posterior)
problems, first introduced by Dempster, Laird, and Rubin in 1977

e Sorta like, just assign points to clusters to start with and iterate.

e Then, at each iteration, replace the augmented data by its
conditional expectation given current observed data and
parameter estimates. (E-step)

 Maximize the full-data likelihood (M-step).

@AM 207

Why does it work?

p(z|0) = Zp z, z|0)

where the x and z range over the multiple points in your data set.

Then x-data log-likelihood £(z|0) = log p(z|0) = log Zp(ag, z|6).
Hard to maximize for us.

@AM 207

Assume z has some normalized distribution:
z ~ q(z).

We wish to compute conditional expectations of the type:
Ey e 2]

but we dont know this "posterior" (henceforth p).

Lets say we somehow know g.

@AM 207

Consider KL loss function

KL(q|lp) = Dx1(q,p) = E, [log%] - _E, [log%]

B P 210)
DKL(Qap) — Eq[l g qp(ww)

|

(, 2|6)
q

Dt (a,p) = — (Eq[wgp | Eq[Zogp(a:wn)

@AM 207

x-data likelihood

(, 2|6)
q

logp(z|0) = E, [logp | + Dkr(q,p)

If we define the ELBO or Evidence Lower
bound as:

x, z|0)
q

£(q,0) = E,llog? =2,

then log p(z|#) = ELBO + KL-divergence

@AM 207

KL(q||p)

e KL divergence only O when p = g exactly everywhere
e minimizing KL means maximizing ELBO
 ELBO L(q,0) is a lower bound on the log-likelihood.

 ELBO is average full-data likelihood minus entropy of g:

L(q,0) = E, [logp(x’qz‘e)] = E,[logp(z, z|0)] — E,[log q]

@AM 207

E-step conceptually

Choose at some (possibly initial) value of

KL(g||p) =0

the parameters 6,4, f
q(2) = p(z|z,004),
then KL divergence = O, and thus L(q, 6) =
log-likelihood at 8,;;, maximizing the
ELBO. £(g,6°) In p(X|6°)
Conditioned on observed data, and 6,4, ¥ ¥

we use g to conceptually compute the
expectation of the missing data.

@AM 207

E-step: what we actually do

Compute the Auxilary function, Q (6, ot—1)), the expected
complete(full) data log likelihood, defined by:

Q(0, H(t_l)) — EZ\Y:y,e)zet—l logp(z, 2|0)]

or the expectation of the ELBO instead of Q).

@AM 207

@AM 207

M-step

After E-step, ELBO touches £(z|8), any

maximization wrt @ will also “push up” on
likelihood, thus increasing it.

Thus hold ¢(z) fixed at the z-posterior

calculated at 8,;;, and maximize ELBO
L(q,0,0,4) or Q(q,0,0,;) wrt 8 to obtain
new 0,,.,,-

In general ¢(0,,50 # p(z|x, Orew), hence KL

0. Thus increase in £(x|0) > increase in
ELBO.

Process

1. Start with p(z|6)(red curve), 6,4.

2. Until convergence:

1. E-step: Evaluate ¢(z, 6,15) = p(z|z, 0,14)
which gives rise to Q(0, 0,4) or
ELBO(0, 0,4)(blue curve) whose value
equals the value of p(z|0) at 6,4.

2. M-step: maximize Q or ELBO wrt 8 to
get 0,00 -

3. Set O,y = 0. T g

@AM 207

An iteration:

£(0111) > L(q(2,0:),0:11) > L(q(z,6¢),0;) = £(6;)

The first equality follows since L is a lower bound on ¢, the second
from the M-step's maximization of £, and the last from the
vanishing of the KL-divergence after the E-step.

As a consequence, you must observe monotonic increase of the
observed-data log likelihood ¢ across iterations. This is a powerful
debugging tool for your code.

@AM 207

EM is local only!

Note that as shown above, since each EM iteration can only
improve the likelihood, you are guaranteeing convergence to a local
maximum. Because it IS local , you must try some different initial
values of 6,;; and take the one that gives you the largest /.

@AM 207

GMM

E-step: Calculate w; ; = q;(2; = j) = p(z; = jlzi, A, 1, X)

(wia 2 ‘)‘7 22 2)
qi (Zz)

M-step: maximize: £ = Z Z i (2;) log P

k . .
T\ i<t — J 72 i = JIA
L= 5N gz = j)log p(zilzi = j, p B)p(zi = j|A)
o) gi(zi = J)
L= 45:“’%'73' log :
i=1 j=i Wi,;

@AM 207

M-step

Taking derivatives yields following updating formulas:

@AM 207

E-step: calculate responsibilities

We are basically calculating the posterior of the z's given the z's
and the current estimate of our parameters. We can use Bayes rule

: pxizi:j, ,szzzj)\
w; i = P(zi = J|Ti, A\, 1, 25) = k(‘ iy 33) p(A)
Yy p(xilz =1, p,2) p(z = 1|A)

Where p(z;|z; = j, u,) is the density of the Gaussian with mean
w; and covariance X, at z; and p(z; = j|\) is simply A,.

@AM 207

def Estep(x, mu, sigma, Lam):
a = lam * norm.pdf(x, mu[@], sigma[@])
b = (1. - Llam) * norm.pdf(x, mu[l], sigma[l])
return b / (a + b)

def Mstep(x, w):
Lam = np.mean(1l.-w)

mu = [np.sum((1-w) * x)/np.sum(l-w), np.sum(w * x)/np.sum(w)]

sigma = [np.sqgrt(np.sum((1l-w) *¥ (X - mu[@])**2)/np.sum(1l-w)),
np.sqrt(np.sum(w * (x - mu[1])**2)/np.sum(w))]

return mu, sigma, Lam

@AM 207

0.4 [2, 5] [0.6, 0.6]

Initials, mu: [-4.85176052 5.51133343]
Initials, sigma: [2.02807915 3.58912888]
Initials, lam: 0.5418931691319009
Iterations /1

A: N(2.0261, 0.5936)

B: N(5.0083, 0.6288)

Lam: 0.5884

0.4 [2, 5] [0.6, 0.6]

Initials, mu: [11.09643621 -4.48315085]
Initials, sigma: [4.31750531 0©.95518/57]
Initials, lam: 0.5767814041950222
ITterations 103

A: N(5.0083, 0.6288)

B: N(2.0261, 0.5936)

Lam: 0.4116

@AM 207

Compared to supervised classification and k-means

e M-step formulas vs GDA we can see that are very similar except
that instead of using § functions we use the w's.

 Thus the EM algorithm corresponds here to a weighted maximum
likelihood and the weights are interpreted as the 'probability' of
coming from that Gaussian

 Thus we have achieved a soft clustering (as opposed to k-means
in the unsupervised case and classification in the supervised case).

@AM 207

e kmeans is HARD EM. Instead of
calculating Q) in e-step, use mode of z
posterior. Also the case with
classification

e finite mixture models suffer from
multimodality, non-identifiability, and plz)
singularity. They are problematic but
useful

e models can be singular if cluster has
only one data point: overfitting

e add in prior to regularise and get MAP.
Add log(prior) in M-step only

@AM 207

