
Lecture 12

Non-Linear Func.on Approxima.on 
and Classifica.on



Last Time

• More Logis+c Regression: arranging in layers

• Reverse Mode Differen+a+on

• A general way of solving SGD problems

• Neural Networks

• SGD and linear models: Universal Approxima+on



Today

• Backprop example

• Universal Approxima4on

• Learning Representa4ons

• Latent Variables

• Mixture Models



MLE for Logis+c Regression



Equa%ons, layer by layer



Reverse Mode Differen.a.on

Write as:



From Reverse Mode to Back Propaga4on

• Recursive Structure

• Always a vector 3mes a Jacobian

• We add a "cost layer" to . The deriva3ve of this layer with 
respect to  will always be 1.

• We then propagate this deriva3ve back.



Backpropaga)on

RULE1: FORWARD (.forward in pytorch) 

RULE2: BACKWARD (.backward in pytorch)

 or .



In par'cular:

RULE 3: PARAMETERS

(backward pass is thus also used to fill the variable.grad parts of 
parameters in pytorch)





Feed Forward Neural Nets: The perceptron



Just combine perceptrons

• both deep and wide

• this buys us complex nonlinearity

• both for regression and classifica9on

• key technical advance: BackPropaga9on with

• autodiff

• key technical advance: gpu



Combine Perceptrons





Forward Pass

We want to obtain gradients. For example: 

First we do the Forward Pass. Say we have 1 sample: (x=0.1, y=5). Ini?alize . Then, plugging in the numbers 
will give us some Cost ( ).



Backward Pass

Now it is (me to find the gradients, for eg, 

The basic idea is to gather all parts that go 
to , and so on and so forth. Now we 
perform GD (SGD) with some learning 
rate. 

The parameters get updated. Now we 
repeat the forward pass.

Thats it! Wait for convergence.



Backpropaga)on

FORWARD: 

BACKWARD: 



Another model

Now  follows 2 paths.



Basic code outline

dataset = torch.utils.data.TensorDataset(torch.from_numpy(xgrid.reshape(-1,1)), torch.from_numpy(ygrid))
loader = torch.utils.data.DataLoader(dataset, batch_size=64,shuffle=True)
def run_model(model, epochs):
    criterion = nn.MSELoss()
    lr, epochs, batch_size = 1e-1 , epochs , 64
    optimizer = torch.optim.SGD(model.parameters(), lr = lr )
    accum=[]
    for k in range(epochs):
        localaccum = []
        for localx, localy in iter(loader):
            localx = Variable(localx.float())
            localy = Variable(localy.float())
            output, _, _ = model.forward(localx)
            loss = criterion(output, localy)
            model.zero_grad()
            loss.backward()
            optimizer.step()
            localaccum.append(loss.data[0])
        accum.append((np.mean(localaccum), np.std(localaccum)))
    return accum



Universal Approxima0on

• any one hidden layer net can approximate any con2nuous 
func2on with finite support, with appropriate choice of 
nonlinearity

• under appropriate condi2ons, all of sigmoid, tanh, RELU can work

• but may need lots of units

• and will learn the func2on it thinks the data has, not what you 
think



One hidden, 1 vs 2 neurons



Two hidden, 4 vs 8 neurons





Relu (80, 1 layer) and tanh(40, 2 layer)



Some rules of thumb

• relu and tanh are be-er non-lineari1es in hidden layers

• normalize your data by squashing to unit interval or standardizing 
so that no feature gets more important than the other

• outputs from non-linearity at any intermediate layer may need 
normalizing



CLASSIFICATION
• will a customer churn?

• is this a check? For how much?

• a man or a woman?

• will this customer buy?

• do you have cancer?

• is this spam?

• whose picture is this?

• what is this text about?j

j image from code in h/p://bit.ly/1Azg29G



CLASSIFICATION
BY LINEAR SEPARATION

Which line?

• Different Algorithms, different lines.

• SVM uses max-marginj

j image from code in h/p://bit.ly/1Azg29G



PROBABILISTIC CLASSIFICATION

Model  or .



DISCRIMINATIVE CLASSIFIER



Half moon dataset (ar/ficially GENERATED)



1 layer, 2 vs 10 neurons



2 layers, 20 neurons vs 5 layers, 1000 neurons



Discrimina)ve Learning

• are these classifiers any good?

• they are discrimina4ve and draw boundaries, but thats it

• they are cheaper to calculate but shed no insight

• would it not be be;er to have a classifier that captured the 
genera4ve process



GENERATIVE CLASSIFIER



Representa)on Learning

• the idea of genera.ve learning is to capture an underlying representa.on 
(compressed) of the data

• in the previous slide it was 2 normal distribu.ons

• generally more complex, but the idea if to fit a "genera.ve" model whose parameters 
represent the process

• wait, we've been doing this in our bayesian or condi.onal-on-data-marginalize-over-
all-else paradigm

• besides gpus and autodiff on backprop, this is the third pillar of the AI rennaissance: 
the choice of beHer representa.ons: e.g. convolu.ons



Ok, so how do we model (simple) representa5ons. We've been 
doing it already.

Latent
Variables

we marginalize over...



• instead of bayesian vs frequen2st, think hidden vs not hidden

• key concept: full data likelihood  vs par2al data likelihood 

• For regression/classifica2on "  or ", full is supervised with 
par2al being unsupervised

• observed variables  correspond to data, and latent variables  
to classes/parameters



From edwardlib docs: 

describes how any data  depend on the latent variables .

• The likelihood posits a data genera1ng process, where the data 
 are assumed drawn from the likelihood condi5oned on a 

par5cular hidden pa7ern described by .

• The prior  is a probability distribu5on that describes the 
latent variables present in the data. The prior posits a genera1ng 
process of the hidden structure.



Mixture Models mo.va.on

•  as "classes" in a classifica,on problem leads to a genera,ve 
classifier

• but in general, that iden,fica,on is very strong, indeed  may 
just be a representa,on



Mixture Models

A distribu*on  is a mixture of  
component distribu*ons  if:

with the  being mixing weights, , 
.



Genera&ve Model: How to simulate from it?

where  says which component X is drawn from.

Thus  is the probability that the hidden class variable .

Then:  and general structure is:

 .



Gaussian Mixture Model

Genera&ve:
mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])
n = 10000

# Simulate from each distribution according to mixing proportion psi
z = multinomial.rvs(1, lambda_true, size=n) #categorical
x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
    sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, 0, 0],[0, 0, 1],...[1, 0, 0],[1, 0, 0]])



Genera&ve Classifier

For a feature vector , we use Bayes rule to express the posterior 
of the class-condi9onal as:

This is a genera&ve classifier, since it specifies how to generate the 
data using the class-condi6onal density  and the class 
prior .



Genera&ve vs Discrimina&ve classifiers

• LDA vs logis,c respec,vely.

• Both have "genera,ve" bayesian models:  or . 
Here think of 

• LDA is genera,ve as it models  while logis,c models  
directly. Here think of 

• we do know  on the training set, so think of the unsupervised 
learning counterparts of these models where you dont know 



Genera&ve vs Discrimina&ve classifiers (contd)

• genera've handles data asymmetry be2er

• some'mes genera've models like LDA and Naive Bayes are easy to fit. Discrimina've models require 
convex op'miza'on via Gradient descent

• can add new classes to a genera've classifier without retraining so be2er for online customer selec'on 
problems

• genera've classifiers can handle missing data easily

• genera've classifiers are be2er at handling unlabelled training data (semi-supervized learning)

• preprocessing data is easier with discrimina've classifiers

• discrimina've classifiers give generally be2er callibrated probabili'es

• discrimina've usually less expensive





The two meanings of genera0ve

Thus we abuse the world genera)ve in two senses:

1. A way to generate data drom a data story. Here think of 

2. A Model in which we try to figure  or . Here think of 
 or a class label.

Now lets focus on the la/er. Suppose we believe their exists a 
"class" or representa9on . Then a dichotomy arises depending on 
whether  is observed or not.



Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables  are observed.

In other words, we can write the full-data likelihood 

In Unsupervised Learning, Latent Variables  are hidden.

We can only write the observed data likelihood:



GMM supervised formula1on

, 

Full-data loglike: 



Solu%on to MLE



Classifica(on

We can use the log likelihood at a given x as a classifier: assign 
class depending upon which probability  is larger. 
(JUST  likelihood, as we want to compare probabiliAes at fixed s).

The first term of the likelihood does not ma2er since it is 
independent of .



Unsupervised: How many clusters ?



Concrete Formula.on of unsupervised learning

Es#mate Parameters by -MLE:

Not Solvable analy-cally! EM and Varia-onal. Or do MCMC.



Semi-supervised learning

We have some labels, but typically very few labels: not enough to form a 
good training set. Likelihood a combina=on.

Here  ranges over the data points where we have labels, and  over the 
data points where we dont.



Semi-supervised learning

Basic Idea: there is structure in  which might help us divine the 
condi7onals, thus combine full-data and -likelihood.

Include  on the valida/on set in the likelihood, and  and  on the 
training set in the likelihood.

Has been very useful for Naive Bayes.



Decision Theory
Predic'ons (or ac'ons based on predic'ons) are described by a u'lity or 
loss func'on, whose values can be computed given the observed data.



Point Predic+ons: squared loss

Some%mes we want to make point predic%ons. In this case  is a single numb
er.

squared error loss/u,lity: 

The op'mal point predic'on that minimizes the expected loss (nega've 
expected u'lity):



is the posterior predic,ve mean:

The expected loss then becomes:

Squared loss  we dont care about skewness or kurtosis



Custom Loss: Stock Market 
Returns

def stock_loss(stock_return, pred, alpha = 100.):
    if stock_return * pred < 0:
        #opposite signs, not good
        return alpha*pred**2 - np.sign(stock_return)*pred \
                        + abs(stock_return)
    else:
        return abs(stock_return - pred)



Loss at every x

noise = std_samples*np.random.randn(N)

#posterior predictive samples at every x
possible_outcomes = lambda signal: alpha_samples + beta_samples*signal + noise

opt_predictions = np.zeros(50)
trading_signals =  np.linspace(X.min(), X.max(), 50)
for i, _signal in enumerate(trading_signals):
        _possible_outcomes = possible_outcomes(_signal)
        #expected loss over posterior predictive
        tomin = lambda pred: stock_loss(_possible_outcomes, pred).mean()
        #bayes action minimizes expected loss
        opt_predictions[i] = fmin(tomin, 0, disp = False)



The two risks

There are two risks in learning that we must consider, one to es.mate 
probabili.es, which we call es#ma#on risk, and one to make 
decisions, which we call decision risk.

The decision loss  or u+lity  (profit, or benefit) in making 
a decision  when the predicted variable has value . For example, 
we must provide all of the losses (no-cancer, biopsy), (cancer, 
biopsy), (no-cancer, no-biopsy), and (cancer, no-biopsy). One set of 
choices for these losses may be 20, 0, 0, 200 respecDvely.



Classifica(on Risk

That is, we calculate the predic've averaged risk over all choices y, of 
making choice a for a given data point.

Overall risk, given all the data points in our set:



Two class Classifica,on

Then for the "decision"  we have:

and for the "decision"  we have:



Now, we'd choose  for the data point at  if:

So, to choose '1', the Bayes risk can be obtained by se5ng:

.



One can use the predic/on cost matrix 
corresponding to the consufion matrix

If you assume that True posi1ves and True 
nega1ves have no cost, and the cost of a 
false posi1ve is equal to that of a false 
posi1ve, then  and the threshold is 
the usual intui1ve .




