Lecture 12

Non-Linear Function Approximation
and Classification
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Last Time

e More Logistic Regression: arranging in layers
 Reverse Mode Differentiation

e A general way of solving SGD problems
 Neural Networks

e SGD and linear models: Universal Approximation
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e Backprop example

e Universal Approximation
e |earning Representations
e Latent Variables

e Mixture Models
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MLE for Logistic Regression
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Equations, layer by layer
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Reverse Mode Differentiation
Cost = f** (£ (£* (' (x))))
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From Reverse Mode to Back Propagation

e Recursive Structure
e Always a vector times a Jacobian

e We add a "cost layer" to z*. The derivative of this layer with
respect to 2* will always be 1.

e We then propagate this derivative back.
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Backpropagation

RULE1: FORWARD (. forward in pytorch) z'*! = f!(z)

RULE2: BACKWARD (.backward in pytorch)
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In particular:

B 0z* ~oC
0z 03

J

RULE 3: PARAMETERS
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(backward pass is thus also used to fill the variable. grad parts of
parameters in pytorch)
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Backward
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Feed Forward Neural Nets: The perceptron

Input
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Just combine perceptrons

e both deep and wide

e this buys us complex nonlinearity

e both for regression and classification

e key technical advance: BackPropagation with
e autodiff

e key technical advance: gpu
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Combine Perceptrons
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Forward Pass

. . dCost 02"
We want to obtain gradients. For example: o*x _ %=

Oparam  Own

First we do the Forward Pass. Say we have 1 sample: (x=0.1, y=5). Initialize b;, wy, ba, wa, we1, wo2, by- Then, plugging in the numbers
will give us some Cost (2°, 25).

ZS-." (Z"—"J') 24 -W0123 *Wdz%z%‘fépz 3,_}/(;-\-@ ) 2;2’
/(’%‘)2( >+ by 2 LV\/z:Z-be%L X =0 |
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Backward Pass

Now it is time to find the gradients, for eg,
02°

8’(1)1

The basic idea is to gather all parts that go
to wq, and so on and so forth. Now we

perform GD (SGD) with some learning
rate.

The parameters get updated. Now we
repeat the forward pass.

Thats it! Wait for convergence.
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Backpropagation

FORWARD: 2/t = f(z!)

BACKWARD: 8, = 2¢ — 3~ % o § g 9+
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Another model
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Basic code outline

dataset = torch.utils.data.TensorDataset(torch.from numpy(xgrid.reshape(-1,1)), torch.from numpy(ygrid))
loader = torch.utils.data.DatalLoader(dataset, batch_size=64,shuffle=True)
def run_model(model, epochs):
criterion = nn.MSELoss()
lLr, epochs, batch_size = le-1 , epochs , 64
optimizer = torch.optim.SGD(model.parameters(), lr = lr )
accum=[ ]
for k in range(epochs):
localaccum = []
for localx, localy in iter(loader):
localx = Variable(localx.float())
localy = Variable(localy.float())
output, , _ = model.forward(localx)
Lloss = criterion(output, localy)
model .zero _grad()
lLoss.backward()
optimizer.step()
Llocalaccum.append(loss.data[@])
accum. append((np.mean(localaccum), np.std(localaccum)))
return accum
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Universal Approximation

e any one hidden layer net can approximate any continuous
function with finite support, with appropriate choice of
nonlinearity

e under appropriate conditions, all of sigmoid, tanh, RELU can work
e but may need lots of units

e and will learn the function it thinks the data has, not what you
think
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One hidden, 1 vs 2 neurons
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Two hidden, 4 vs 8 neurons
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input dim 1, 1 hidden layers width 16, linear output
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Relu (80, 1 layer) and tanh(40, 2 layer)

10 - 10 -
0.8 - 0.8
0.6 - 0.6 -
0.4 - 0.4
0.2 - 0.2
0.0 - 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6
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Some rules of thumb

e relu and tanh are better non-linearities in hidden layers

e normalize your data by squashing to unit interval or standardizing
so that no feature gets more important than the other

e outputs from non-linearity at any intermediate layer may need
normalizing
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CLASSIFICATION

e will a customer churn?

e s this a check? For how much?
e 2 man or awoman?

e will this customer buy?

e do you have cancer?

e is this spam?

 whose picture is this?

e what is this text about?

Jimage from code in http:/bit.ly/1Azg29G



CLASSIFICATION

BY LINEAR SEPARATION
Which line?

e Different Algorithms, different lines.

e SVM uses max-margin’

Jimage from code in http:/bit.ly/1Azg29G
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PROBABILISTIC CLASSIFICATION
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Model P(y|x) or P(z|y).
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DISCRIMINATIVE CLASSIFIER

P(y|z) : P(male|height,weight)
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Half moon dataset (artificially GENERATED
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1 layer, 2 vs 10 neurons
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MLP(
(fc_initial): Linear(in_features=2, ¢
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L
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2 layers, 20 neurons vs 5 layers, 1000 neurons

3 3 MLP(
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Discriminative Learning

e are these classifiers any good?
e they are discriminative and draw boundaries, but thats it
e they are cheaper to calculate but shed no insight

 would it not be better to have a classifier that captured the
generative process
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GENERATIVE CLASSIFIER

P(y|z) o< P(x|y)P(z) : P(height,weight/male) x P(male)
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Representation Learning

e the idea of generative learning is to capture an underlying representation
(compressed) of the data

e in the previous slide it was 2 normal distributions

e generally more complex, but the idea if to fit a "generative" model whose parameters
represent the process

e wait, we've been doing this in our bayesian or conditional-on-data-marginalize-over-
all-else paradigm

e besides gpus and autodiff on backprop, this is the third pillar of the Al rennaissance:
the choice of better representations: e.g. convolutions
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Ok, so how do we model (simple) representations. We've been

Latent
Variables

we marginalize over...
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e instead of bayesian vs frequentist, think hidden vs not hidden

» key concept: full data likelihood p(x, z) vs partial data likelihood

p(x) = ) p(x|z)p(z)

For regression/classification "z = y or ¢', full is supervised with
partial being unsupervised

e observed variables x correspond to data, and latent variables z
to classes/parameters
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From edwardlib docs: p(x | z)

describes how any data x depend on the latent variables z.

 The likelihood posits a data generating process, where the data
x are assumed drawn from the likelihood conditioned on a
particular hidden pattern described by z.

* The prior p(z) is a probability distribution that describes the

latent variables present in the data. The prior posits a generating
process of the hidden structure.
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Mixture Models motivation

e 7 as "classes" in a classification problem leads to a generative
classifier

e butin general, that identification is very strong, indeed z may
just be a representation
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Figure 3

~ Dirichletx(a)

~ Discrete(8)

~ Mz, 1)

~ N0, 6})

(@) A graphical model for a mixture of two Gaussians. There are three data points. The shaded nodes are
observed variables, the unshaded nodes are hidden variables, and the blue square boxes are fixed
hyperparameters (such as the Dirichlet parameters). () A graphical model for a mixture of K Gaussians with

N data points.
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Mixture Models

A distribution p(z|{6}) is a mixture of K
component distributions py, ps, ... px if:

p(z|[{6k}) Z)\kpk (z|6k)

with the )\, being mixing weights, A\, > 0,

Z)\kzl.
k



Generative Model: How to simulate from it?

Z ~ Categorical(Ai, A2, . .., Ag)

where Z says which component X is drawn from.

Thus ); is the probability that the hidden class variable z = j.

Then: X ~ p,(x|0,) and general structure is:

p(z|{0:}) ZP z, z) Zp p(x|z,0,)
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Gaussian Mixture Model

p(@|{6:}) = 3 AN (@|pak, i)
k

Generative:

mu_true = np.array([2, 5, 10])
sigma_true = np.array([0.6, 0.8, 0.5])
lambda_true = np.array([.4, .2, .4])

n = 10000

# Simulate from each distribution according to mixing proportion psi

z = multinomial.rvs(1l, lambda_ true, size=n) #categorical

x=np.array([np.random.normal(mu_true[i.astype('bool')][0],\
sigma_true[i.astype('bool')][0]) for i in z])

multinomial.rvs(1,[0.6,0.1, 0.3], size=10)
array([[1, o, ©],[9, @, 1],...[1, @, @],[1, @, @]])



Generative Classifier

For a feature vector x, we use Bayes rule to express the posterior
of the class-conditional as:

p(z = c|f)p(z|z = ¢, 6)
2. P(z=c0)p(z|z = c’,0)

p(z =cl|z,0) =

This is a generative classifier, since it specifies how to generate the
data using the class-conditional density p(z|z = ¢, 8) and the class
prior p(z = c|0).
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Generative vs Discriminative classifiers

e |LDA vs logistic respectively.

» Both have "generative" bayesian models: p(c|z, 8) or p(y|x, 8).
Here think of z = 6

* LDA is generative as it models p(x|c) while logistic models p(c|x)
directly. Here think of z = ¢

e we do know ¢ on the training set, so think of the unsupervised
learning counterparts of these models where you dont know ¢
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Generative vs Discriminative classifiers (contd)

e generative handles data asymmetry better

e sometimes generative models like LDA and Naive Bayes are easy to fit. Discriminative models require
convex optimization via Gradient descent

e can add new classes to a generative classifier without retraining so better for online customer selection
problems

e generative classifiers can handle missing data easily

e generative classifiers are better at handling unlabelled training data (semi-supervized learning)
e preprocessing data is easier with discriminative classifiers

e discriminative classifiers give generally better callibrated probabilities

e discriminative usually less expensive
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The two meanings of generative

Thus we abuse the world generative in two senses:
1. A way to generate data drom a data story. Here think of z = 6

2. A Model in which we try to figure p(x, z) or p(x|z). Here think of
z = c or a class label.

Now lets focus on the latter. Suppose we believe their exists a
"class” or representation z. Then a dichotomy arises depending on
whether z is observed or not.
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Supervised vs Unsupervised Learning

In Supervised Learning, Latent Variables z are observed.

In other words, we can write the full-data likelihood p(x, z)

In Unsupervised Learning, Latent Variables z are hidden.

We can only write the observed data likelihood:
- Yr) = Y pla)o(xla)
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GMM supervised formulation

Z ~ Bernoulli(\)
X|Z =0~ N(MQ,ZQ), X‘Z =1~ N(ul,Zl)

Full-data loglike: [(z, 2|\, o, p1,3) = — ZlOg((ZW)n/2|Z|1/2)
i=1

m

_%i(x_“’%)T E_l(x_.u'zz‘)_l_ - [Z’i logA_l_(l_zz)lOg(l_}\)]

1=1 1
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Solution to MLE

Ho = Z%}L 00
Zizl 2,0

p1 Z:% 02, 21
Zz’zl Ziy1



Classification

We can use the log likelihood at a given x as a classifier: assign
class depending upon which probability p(z;|A, z, X) is larger.
(JUST z likelihood, as we want to compare probabilities at fixed zs).

m

1 _
logp(a;|A, 2 T) Zlog ()" 2[S[2) = 53 (@ — )T 27 (@ — pa)
1=1

The first term of the likelihood does not matter since it is
independent of 2.
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How many clusters z?

Unsupervised

300

300

250

250

200

o
&

150

150

100

100

75

70

65

55

75

70

65

55
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Concrete Formulation of unsupervised learning

Estimate Parameters by x-MLE:

3

Z logp(xi p‘a 22 Z)

1=1

— Z ngp CBZ|ZZ,,U, )p(zzP\)

1=1

[(z|A, p, X)

S

Not Solvable analytically! EM and Variational. Or do MCMC.
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Semi-supervised learning

We have some labels, but typically very few labels: not enough to form a
good training set. Likelihood a combination.

({zi}, {z;}, {2116, \) = Y _logp(zi, |A,0) + )  logp(z;|X, 0)
= Z log p(zi|A\)p(z;|2,0) + Z log > p(zj|A\)p(z;|z;,0)

Here ¢ ranges over the data points where we have labels, and j over the
data points where we dont.

@AM 207



Semi-supervised learning

Basic Idea: there is structure in p(a) which might help us divine the
conditionals, thus combine full-data and x-likelihood.

Include z on the validation set in the likelihood, and £ and z on the
training set in the likelihood.

Has been very useful for Naive Bayes.
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Decision Theory

Predictions (or actions based on predictions) are described by a utility or
loss function, whose values can be computed given the observed data.
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Point Predictions: squared loss

Sometimes we want to make point predictions. In this case a is a single numb
er.

squared error loss/utility: I(a, y*) = (a — y*)?

The optimal point prediction that minimizes the expected loss (negative
expected utility):

[(a) = /dy* (a — y*)* p(y*|D, M),
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Is the posterior predictive mean:
a=FE,y"|.
The expected loss then becomes:

l(a) = /dy* (@ —y*)* p(y*|D, M) = /dy* (Eply*] — v*)’ p(y* | D, M) = Var,[y*]

Squared loss =— we dont care about skewness or kurtosis
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Custom Loss: Stock Market
Retu rn S 0.25 Stock returns loss if true value = 0.05, -0.02

Loss associated with
prediction if true value = 0.05

Loss associated with
prediction if true value = -0.02

Empirical returns vs trading signal

—— Least-squares line ’ 020

0.15

returns

loss

0.10 .

-0.04 -0.02 0.00 0.02 0.04
trading signal

0.056 N\

def stock_ loss(stock return, pred, alpha = 100.):
if stock_return * pred < 0:
#opposite signs, not good
return alpha*pred**2 - np.sign(stock _return)*pred \ 0.00
+ abs(stock_return)

-0.10 -0.05 0.00 0.05 0.10

olse: prediction

return abs(stock return - pred)
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Loss at every X

0.03 Least-squares prediction vs. Bayes action prediction

- | east-squares prediction
- Bayes action prediction

noise = std_samples*np.random.randn(N)

#posterior predictive samples at every X 0.02
possible_outcomes = lambda signal: alpha_samples + beta_samples¥*signal + noise '

opt_predictions = np.zeros(50)
trading_signals = np.linspace(X.min(), X.max(), 50) 0.01
for i, _signal in enumerate(trading_signals):

_possible_outcomes = possible_outcomes(_signal)

c
#expected loss over posterior predictive O
tomin = lambda pred: stock loss(_possible outcomes, pred).mean() Eé 0.00
#bayes action minimizes expected loss }3
opt_predictions[i] = fmin(tomin, @, disp = False) ok
-0.01
-0.02
-0.03

-0.04 -0.02 0.00 0.02 0.04
trading signal
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The two risks

There are two risks in learning that we must consider, one to estimate
probabilities, which we call estimation risk, and one to make
decisions, which we call decision risk.

The decision loss [(y, a) or utility u(l, a) (profit, or benefit) in making
a decision a when the predicted variable has value y. For example,
we must provide all of the losses l(no-cancer, biopsy), l(cancer,
biopsy), l(ho-cancer, no-biopsy), and I(cancer, no-biopsy). One set of
choices for these losses may be 20, O, O, 200 respectively.
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Classification Risk

Zl y, a(z))p(y|z)

That is, we calculate the predictive averaged risk over all choices vy, of
making choice a for a given data point.

Overall risk, given all the data points in our set:

R(a) = / dzp(z) Ry ()
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Observed

Predicted
TN FP on
O Observed
True Negative False Positive Negative
FN TP o
1 Observed
False Negative True Positive Positive
PN PP
Predicted Predicted
Negative Positive
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Two class Classification

R,(z) = U(1,9)p(1|z) + 1(0, g)p(0|z).
Then for the "decision" a = 1 we have:

Ry (z) = U(1,1)p(1|z) + (0, 1)p(0]z),
and for the "decision" a = 0 we have:

Ry(z) = I(1,0)p(1|z) + 1(0,0)p(0]x).



Now, we'd choose 1 for the data point at z If:
Ri(z) < Ry(x).
P(1]z)(1(1,1) — 1(1,0)) < p(0]z)(1(0,0) — 1(0,1))
So, to choose '1', the Bayes risk can be obtained by setting:

1(0,1) — 1(0,0)

pllz) > rPQlz) = r= 795y —11.1)

r

Pliz) >t = .
(1z) > t = T
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One can use the prediction cost matrix
corresponding to the consufion matrix

If you assume that True positives and True
negatives have no cost, and the cost of a
false positive is equal to that of a false
positive, then r = 1 and the threshold is
the usual intuitive ¢t = 0.5.
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0 1

TNC FPC

True Negative Cost | False Positlive Coslt

FNC TPC

False Negative Cost | True Positive Cost
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