Lecture 11

Gradient Descent and Non-Linear
Function Approximation

(Neural Networks)

@AM 207

Last Time

e Rejection Sampling (Steroids) or with majorization
e |ogistic Regression and Gradient Descent
e Stochastic Gradient Descent (simple)

e |mportance Sampling and expectations

@AM 207

Today

e More Logistic Regression: arranging in layers
 Reverse Mode Differentiation

e A general way of solving SGD problems
 Neural Networks

e SGD and linear models: Universal Approximation

@AM 207

Statement of the Learning
5 Problem

The sample must be representative of the
population!

A : Rp(g) smallestonH
B : Ry (g) ~ RD(g)

A: Empirical risk estimates in-sample risk.
B: Thus the out of sample risk is also small.

&AM 207

What we'd really like: population

l.e. out of sample RISK

(Rout) = Ep(z4) [R(h(z),y)] = / dydz p(z,y)R(h(z),y)

 But we only have the in-sample risk, furthermore its an empirical
risk

e And its not even a full on empirical distribution, as N is usually
quite finite

@AM 207

LLN, again

The sample empirical distribution converges to the true population
distributionas N — oo

Then we'll want an average over possible samples generated from the
population.

We dont have that, so we:

e stick to empirical risk in one sample, but then

e engage In train-test, validation, and cross-validation in our sample

@AM 207

Gradient Descent.

For a particular sample, we want:

Ryt (hy 1)) = / dzp(z)Vh Ro (h(z),9) (€. 9.).

LLN: = Vh— Y Rout(h(z:),4i) ~ Va— ZRm

zEpop 'LED

@AM 207

Gradient Descent

0:=0—nVyeR(0) =0 — niVRz-(O)

i=1
where n is the learning rate.

ENTIRE DATASET NEEDED

for 1 in range(n_epochs):
params grad = evaluate gradient(loss function, data, params)
params = params - learning rate * params_grad

@AM 207

Linear Regression: Gradient
Descent

&AM 207

Stochastic Gradient Descent

0 := 0 — aVyR;(6)
ONE POINT AT ATIME
For Linear Regression:
0; := 0; + a(y® — fo(z?))z

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:
params _grad = evaluate gradient(loss function, example, params)
params = params - learning rate * params_grad

@AM 207

Mini-Batch SGD (the most used)

for 1 in range(mb_epochs):
np.random.shuffle(data)
for batch in get batches(data, batch size=50):
params _dgrad = evaluate gradient(loss function, batch, params)
params = params - learning rate * params_grad

@AM 207

Mini-Batch: do some at a time

e the risk surface changes at each gradient calculation

e thus things are noisy

e cumulated risk is smoother, can be used to compare to SGD

e epochs are now the number of times you revisit the full dataset

e shuffle in-between to provide even more stochasticity

@AM 207

&AM 207

MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)
e "Squeeze" linear regression through a Sigmoid function
e this bounds the output to be a probability

e What is the sampling Distribution?

@AM 207

Sigmoid function

This function is plotted below:

h = lambda z: 1./(1l4np.exp(-2z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x and h(w - x) with the

probability that the sampleisa'l' (y = 1).

@AM 207

1.0

0.8

0.6

0.4

0.2

0.0

Then, the conditional probabilities of y = 1 or y = 0 given a
particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y=0|x) =1— h(w - x).

These two can be written together as
P(y|X, W) — h(W . X)y(]_ - h(w . X))(l_y)

BERNOULLI!"

®AM 207

Multiplying over the samples we get:

P(ylx,w) = P({y;}{x:}, w) = [] P(yslxi, w) = [] h(w - x:)¥% (1 — h(w - x;))" %)

y, €D Yy, €D

Indeed its important to realize that a particular sample can be
thought of as a draw from some "true" probability distribution.

maximum likelihood estimation maximises the likelihood of the
sampley, or alternately the log-likelihood,

L =P(y|x,w). ORL=log(P(y | x,w))

@AM 207

Thus

{ = log (H h(w-x;)%(1— h(w- xi))(lyi))

= Z log(w-X;)% (1 — h(w.xi))(l_yi))
= Z log h(w - x;)% + log (1 — h(w - x;))\1 %)
— Z (yilog(h(w - x)) + (1 — y;)log(1 — h(w - x)))

@AM 207

Logistic Regression: NLL

The negative of this log likelihood (NLL), also called cross-entropy.

NLL = = Y (uilog(h(w - x)) + (1 — yi)log(1 — h(w - x))
Gradient: Vo, NLL = » xF(pi —y)=X"-(p—w)

Hessian: H = X diag(p; (1 — p;))X positive definite = convex

@AM 207

&AM 207

X; W /

I. [
—’
| |

Units based diagram

I

Sigmoid

NLL —+ Cost

Y (yilog(h(w - x;)) + (1 — y,)log(1 — h(w - x,)))

Softmax formulation

e |dentify p; and 1 — p; as two separate probabilities constrained
toadd to 1. Thatis py; = p;;p9; = 1 — p;.

6W1 -X
S J—
P1i eW1'X | WX
6W2°X
o . —
P2i =

eW]_ X _|_ 6W2 X

e Can translate coefficients by fixed amount ¢ without any change

@AM 207

NLL and gradients for Softmax

NLL = - (11(y;)log(p1s) + 12 (yi)log(p2i))

1

VL 5 - ZEE 3 -

@AM 207

&AM 207

Units diagram for Softmax

Softmax

6Wl X
eWix + eW2X
>

CWQ'X

— Cost

log(SM (w1 - x, Wy - X)) +

Mog(SMy(w; - x, ws - x)))

Rewrite NLL

NLL = — Z (11 (y;) LSMy (w1 - x,Wo - X) + 15(y;) LSMs (w1 - X, Wy - X))

1

Wi1-X
61

where SM; = puts the first argument in the

eW]_ X eWz X

numerator. Ditto for LSM; which is simply log(SMj).

@AM 207

Units diagram Again

Input 2 _x..

npu 21 = X4 V:I 23 = LSM, (22, 22)

1 > . .
I 1 — i Wy 2 =Z(11z;‘+12z3)
T9; —* Linear LSM NILL > Cost
« o0 //: zg =X; W3 Zg = LSA’fz(Z.’%,Z%)
>
L di | i
Z Wy

&AM 207

Equations, layer by layer

Zz — X;

z° = (21,23) = (W1 - X3, W2 - X;) = (W1 - 2], W2 - 2])

N
|

' = () = (LM,), LMy (4, 7))

2 = NLL(z®) = NLL(#3,23) = = ¥ (11(9:) 23 () + 12 (y:) 2 (3))

1

&AM 207

&AM 207

Reverse Mode Differentiation
Cost = f** (£ (£* (' (x))))

aftess o> of? of!

VxU0st = =5 3¢ Bl ox
Write as:
OfL"SS ofs of* of!
VXCOSt - (((8f3 sz) F) E)

@AM 207

&AM 207

From Reverse Mode to Back Propagation

e Recursive Structure
e Always a vector times a Jacobian

e We add a "cost layer" to z*. The derivative of this layer with
respect to 2* will always be 1.

e We then propagate this derivative back.

@AM 207

@AM 207

Forward

Layer Cake

2zt = f4(2%) 0t =1

i b
Layer 5: NLL
¥ b
VA 3 = f 3 (z 2) 5 S
i b
Layer 2: LS
t v
2% = f,(z") 52
i b
Layer /: Linear
1 v
2! = x; b) 1

Backward

Backpropagation

RULE1: FORWARD (. forward in pytorch) z'*! = f!(z)

RULE2: BACKWARD (.backward in pytorch)

oC oC
l I _
0 :ﬁoréu_ 0z
oC oC 09z Oz}
- _ E ! v _§ : 1+1 Y=<v
Ou = 0z o2t 8z, % 0z,

@AM 207

In particular:

5B 0z _ oC
Y023 0z
RULE 3: PARAMETERS
oC 0C 0z 14 02
a0 2. 82+1 00 28 0!

U

(backward pass is thus also used to fill the variable.grad parts
of parameters in pytorch)

@AM 207

Backward

2t = fu(2%) 6t =1

1 Y
Layer 5: NI
§ !
2% = £3(2?) 5°
1 b
Layer 2: LSAI
t v
2% = f,y(2") 52
i Y
Layer /: Linear
T v
2z 1 = X 5 1

Forward

@AM 207

Feed Forward Neural Nets: The perceptron

Input

T 1: — LXew - h(X; ¢ w)
L2i —| Unear |/ Gty |]
:cdz'/

@AM 207

Just combine perceptrons

e both deep and wide

e this buys us complex nonlinearity

e both for regression and classification

e key technical advance: BackPropagation with
e autodiff

e key technical advance: gpu

@AM 207

Input

&AM 207

Combine Perceptrons

Linear —*—+’I|neanty -

& INPUT LAYER >
/ \ N n-
- Linear |—» on |

/\ linearity ,

l/vr 7

Linear

Linear

—
HIDDEN LAYER

. linearity |

=N

' Non-
\linearity |

Non-

|

qN—

Linear *—’y
OUTPUT LAYER

Layer Diagram

@AM 207

THATS IT! Write your Own Layer

Layer / - 891

@AM 207

What it looks like?

See https:/github.com/joelgrus/joelnet

Look at the video. A full deep learning library in 35 minutes!

@AM 207

Universal Approximation

e any one hidden layer net can approximate any continuous
function with finite support, with appropriate choice of
nonlinearity

e under appropriate conditions, all of sigmoid, tanh, RELU can work
e but may need lots of units

e and will learn the function it thinks the data has, not what you
think

@AM 207

