
Lecture 11

Gradient Descent and Non-Linear
Func3on Approxima3on

(Neural Networks)

Last Time

• Rejec&on Sampling (Steroids) or with majoriza&on

• Logis&c Regression and Gradient Descent

• Stochas&c Gradient Descent (simple)

• Importance Sampling and expecta&ons

Today

• More Logis+c Regression: arranging in layers

• Reverse Mode Differen+a+on

• A general way of solving SGD problems

• Neural Networks

• SGD and linear models: Universal Approxima+on

Statement of the Learning
Problem

The sample must be representa/ve of the
popula/on!

A: Empirical risk es/mates in-sample risk.
B: Thus the out of sample risk is also small.

What we'd really like: popula3on

i.e. out of sample RISK

• But we only have the in-sample risk, furthermore its an empirical
risk

• And its not even a full on empirical distribu<on, as N is usually
quite finite

LLN, again

The sample empirical distribu1on converges to the true popula1on
distribu1on as

Then we'll want an average over possible samples generated from the
popula7on.

We dont have that, so we:

• s#ck to empirical risk in one sample, but then

• engage in train-test, valida#on, and cross-valida#on in our sample

Gradient Descent.

For a par'cular sample, we want:

LLN:

Gradient Descent

where is the learning rate.

ENTIRE DATASET NEEDED

for i in range(n_epochs):
 params_grad = evaluate_gradient(loss_function, data, params)
 params = params - learning_rate * params_grad`

Linear Regression: Gradient
Descent

Stochas(c Gradient Descent

ONE POINT AT A TIME

For Linear Regression:

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function, example, params)
 params = params - learning_rate * params_grad

Mini-Batch SGD (the most used)

for i in range(mb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data, batch_size=50):
 params_grad = evaluate_gradient(loss_function, batch, params)
 params = params - learning_rate * params_grad

Mini-Batch: do some at a 1me

• the risk surface changes at each gradient calcula2on

• thus things are noisy

• cumulated risk is smoother, can be used to compare to SGD

• epochs are now the number of 2mes you revisit the full dataset

• shuffle in-between to provide even more stochas2city

MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?

Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy: and with the
probability that the sample is a '1' ().

Then, the condi,onal probabili,es of or given a
par,cular sample's features are:

These two can be wri/en together as

BERNOULLI!!

Mul$plying over the samples we get:

Indeed its important to realize that a par1cular sample can be
thought of as a draw from some "true" probability distribu1on.

 maximum likelihood esmaon maximises the likelihood of the
sample y, or alternately the log-likelihood,

 OR

Thus

Logis&c Regression: NLL

The nega(ve of this log likelihood (NLL), also called cross-entropy.

Gradient:

Hessian: posi+ve definite convex

Units based diagram

So#max formula,on

• Iden&fy and as two separate probabili&es constrained
to add to 1. That is

•

•

• Can translate coefficients by fixed amount without any change

NLL and gradients for So0max

Units diagram for So/max

Rewrite NLL

where puts the first argument in the

numerator. Di3o for which is simply .

Units diagram Again

Equa%ons, layer by layer

Reverse Mode Differen.a.on

Write as:

From Reverse Mode to Back Propaga4on

• Recursive Structure

• Always a vector 3mes a Jacobian

• We add a "cost layer" to . The deriva3ve of this layer with
respect to will always be 1.

• We then propagate this deriva3ve back.

Layer Cake

Backpropaga)on

RULE1: FORWARD (.forward in pytorch)

RULE2: BACKWARD (.backward in pytorch)

 or .

In par'cular:

RULE 3: PARAMETERS

(backward pass is thus also used to fill the variable.grad parts
of parameters in pytorch)

Feed Forward Neural Nets: The perceptron

Just combine perceptrons

• both deep and wide

• this buys us complex nonlinearity

• both for regression and classifica9on

• key technical advance: BackPropaga9on with

• autodiff

• key technical advance: gpu

Combine Perceptrons

Layer Diagram

THATS IT! Write your Own Layer

What it looks like?

See h%ps://github.com/joelgrus/joelnet

Look at the video. A full deep learning library in 35 minutes!

Universal Approxima0on

• any one hidden layer net can approximate any con2nuous
func2on with finite support, with appropriate choice of
nonlinearity

• under appropriate condi2ons, all of sigmoid, tanh, RELU can work

• but may need lots of units

• and will learn the func2on it thinks the data has, not what you
think

