
Lecture 11

Gradient Descent and Non-Linear 
Func3on Approxima3on

( Neural Networks)



Last Time

• Rejec&on Sampling (Steroids) or with majoriza&on

• Logis&c Regression and Gradient Descent

• Stochas&c Gradient Descent (simple)

• Importance Sampling and expecta&ons



Today

• More Logis+c Regression: arranging in layers

• Reverse Mode Differen+a+on

• A general way of solving SGD problems

• Neural Networks

• SGD and linear models: Universal Approxima+on



Statement of the Learning 
Problem

The sample must be representa/ve of the 
popula/on!

A: Empirical risk es/mates in-sample risk.
B: Thus the out of sample risk is also small.



What we'd really like: popula3on

i.e. out of sample RISK

• But we only have the in-sample risk, furthermore its an empirical 
risk

• And its not even a full on empirical distribu<on, as N is usually 
quite finite



LLN, again

The sample empirical distribu1on converges to the true popula1on 
distribu1on as 

Then we'll want an average over possible samples generated from the 
popula7on.

We dont have that, so we:

• s#ck to empirical risk in one sample, but then

• engage in train-test, valida#on, and cross-valida#on in our sample



Gradient Descent.

For a par'cular sample, we want:

LLN: 



Gradient Descent

where  is the learning rate.

ENTIRE DATASET NEEDED

for i in range(n_epochs):
  params_grad = evaluate_gradient(loss_function, data, params)
  params = params - learning_rate * params_grad`



Linear Regression: Gradient 
Descent



Stochas(c Gradient Descent

ONE POINT AT A TIME

For Linear Regression: 

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad



Mini-Batch SGD (the most used)

for i in range(mb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data, batch_size=50):
    params_grad = evaluate_gradient(loss_function, batch, params)
    params = params - learning_rate * params_grad



Mini-Batch: do some at a 1me

• the risk surface changes at each gradient calcula2on

• thus things are noisy

• cumulated risk is smoother, can be used to compare to SGD

• epochs are now the number of 2mes you revisit the full dataset

• shuffle in-between to provide even more stochas2city





MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?



Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy:  and  with the 
probability that the sample is a '1' ( ).



Then, the condi,onal probabili,es of  or  given a 
par,cular sample's features  are:

These two can be wri/en together as

BERNOULLI!!



Mul$plying over the samples we get:

Indeed its important to realize that a par1cular sample can be 
thought of as a draw from some "true" probability distribu1on.

 maximum likelihood es$ma$on maximises the likelihood of the 
sample y, or alternately the log-likelihood,

 OR 



Thus



Logis&c Regression: NLL

The nega(ve of this log likelihood (NLL), also called cross-entropy.

Gradient: 

Hessian:  posi+ve definite  convex



Units based diagram



So#max formula,on

• Iden&fy  and  as two separate probabili&es constrained 
to add to 1. That is 

•

•

• Can translate coefficients by fixed amount  without any change



NLL and gradients for So0max



Units diagram for So/max



Rewrite NLL

where  puts the first argument in the 

numerator. Di3o for  which is simply .



Units diagram Again



Equa%ons, layer by layer





Reverse Mode Differen.a.on

Write as:





From Reverse Mode to Back Propaga4on

• Recursive Structure

• Always a vector 3mes a Jacobian

• We add a "cost layer" to . The deriva3ve of this layer with 
respect to  will always be 1.

• We then propagate this deriva3ve back.



Layer Cake



Backpropaga)on

RULE1: FORWARD (.forward in pytorch) 

RULE2: BACKWARD (.backward in pytorch)

 or .



In par'cular:

RULE 3: PARAMETERS

(backward pass is thus also used to fill the variable.grad parts 
of parameters in pytorch)





Feed Forward Neural Nets: The perceptron



Just combine perceptrons

• both deep and wide

• this buys us complex nonlinearity

• both for regression and classifica9on

• key technical advance: BackPropaga9on with

• autodiff

• key technical advance: gpu



Combine Perceptrons



Layer Diagram



THATS IT! Write your Own Layer



What it looks like?

See h%ps://github.com/joelgrus/joelnet

Look at the video. A full deep learning library in 35 minutes!



Universal Approxima0on

• any one hidden layer net can approximate any con2nuous 
func2on with finite support, with appropriate choice of 
nonlinearity

• under appropriate condi2ons, all of sigmoid, tanh, RELU can work

• but may need lots of units

• and will learn the func2on it thinks the data has, not what you 
think


