Lecture 10

Sampling and its use In
Gradient Descent

@AM 207

Last Time

e Exchangeability and the exponential model
e Bayesian Regression
e |nverse Transform Sampling

e Rejection Sampling

@AM 207

Today:

e Rejection Sampling

e Rejection Sampling (Steroids) or with majorization
e |ogistic Regression and Gradient Descent

e Stochastic Gradient Descent (simple)

 Importance Sampling and expectations

@AM 207

Ok. We need Samples

e to compute expectations, integrals and do
statistics, we need samples

e we start that journey today
e |nverse transform
e rejection sampling

e importance sampling: a direct, low-variance way to
do integrals and expectations

@AM 207

Inverse transform

e
o
1

f(x)
C =4 N WA OO N ® ©
—t—t—t—t+—+—+—+—

@AM 207

algorithm

The CDF F' must be invertible!
1. get a uniform sample u from Uni f(0, 1)

2. solve for z yielding a new equation z = F~1 (u)
where F'is the CDF of the distribution we desire.

3. repeat.

For exponential, z = —AIn(1 — u)

@AM 207

code

p = lambda x: np.exp(-x)

CDF = lambda x: 1-np.exp(-x)

invCDF = lambda r: -np.log(l-r) # invert the CDF

xmin = @ # the lower limit of our domain

xmax = 6 # the upper limit of our domain

rmin CDF(xmin)

rmax CDF(xmax)

N = 10000

generate uniform samples in our range then invert the CDF
to get samples of our target distribution
np.random.uniform(rmin, rmax, N)

invCDF(R)

hinfo = np.histogram(X, 100)

plt.hist(X,bins=100, label=u'Samples');

plot our (normalized) function

xvals=np. linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][@]*p(xvals), 'r', label=u'p(x)')
plt.legend()

X 0 #H H
Il

@AM 207

600

300

400

300

200

100

p(x)
Bl Samples

Rejection Sampling

e Generate samples from a uniform distribution with
support on the rectangle

* See how many fall below y(x) at a specific x.

@AM 207

Rejection Sampling Algorithm

1. Draw z uniformly from

Lmin xmaw]

2. Draw y uniformly from
0, Ymaz]

3.ify < f(x), accept the sample
4. otherwise reject it

5. repeat

@AM 207

ymax

example

P = lambda x: np.exp(-x)

xmin = @ # the lower limit of our domain

Xmax 10 # the upper limit of our domain

ymax 1

#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = @ # the number of accepted samples
samples = np.zeros(N)

count = @ # the total count of proposals

while (accepted < N):

pick a uniform number on [xmin, xmax) (e.g. O..

X = np.random.uniform(xmin, xmax)
pick a uniform number on [0, ymax)
y = np.random.uniform(@,ymax)
Do the accept/reject comparison
if y < P(x):

samples[accepted] = X

accepted += 1

count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples, 30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np. linspace(xmin, xmax, 1000)

.10)

plt.plot(xvals, hinfo[@][@]*P(xvals), 'r', label=u'P(x)')

plt.legend()

Count 100294 Accepted 10000

@AM 207

3000

2500

2000

1500

1000

500

P(x)
Bl Samples

10

problems

e determining the supremum may be costly

e the functional form may be complex for
comparison

e even if you find a tight bound for the supremum,
basic rejection sampling is very inefficient: low
acceptance probability

e Infinite support

@AM 207

Variance
Reduction

Rejection on steroids

Introduce a proposal density g(z)
such that the support of f is within
the support of g.

—
o
1

* g(zx) is easy to sample from
andcalculate the pdf)

e Some M < oo exists so that
M g(x) > f(x) in your entire
domain of interest

Y Axis
C = N WA OO N ® ©
A T R pm—

e optimal value for M is the
supremum over your domain of X
interest of f/g.

 probability of acceptanceis 1/M

@AM 207

Algorithm

1. Draw z from your proposal
distribution g(x)

—
o
1

2. Draw gy uniformly from [O,1]

3.ify < f(x)/M g(x), accept the
sample

4. otherwise reject it

Y Axis
C = N WA OO N @ ©
A T R pm—

5. repeat

@AM 207

Example

p = lambda x: np.exp(-x) # our distribution

g = lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = @ # the lower limit of our domain

xmax = 10 # the upper limit of our domain

range limits for inverse sampling

umin = invCDFg(xmin)

umax = invCDFg(xmax)

N = 10000 # the total of samples we wish to generate

accepted = @ # the number of accepted samples

samples = np.zeros(N)

count = @ # the total count of proposals

while (accepted < N):

Sample from g using inverse sampling
u = np.random.uniform(umin, umax)
xproposal = np.exp(u) - 1

pick a uniform number on [0, 1)
y = np.random.uniform(9,1)

Do the accept/reject comparison

if y < p(xproposal)/g(xproposal):
samples[accepted] = xproposal
accepted += 1

count +=1

print("Count", count, "Accepted", accepted)

get the histogram info

hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)

plt.plot(xvals, hinfo[@][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[@][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000

@AM 207

1600

1400

1200

1000

800

600

400

200

p(x)
alx)
Bl Samples

10

Rejection sampling (steroids)

o ideally g(z) will be somewhat close to f

e large values of M imply lower efficiency
e can do empirical supremum rejection sampling:

At z chosen according to g, choose initial M, compare
to f/g, and choose new M = max(M, f(x)/g(x)).

Repeat.

@AM 207

Rejection to Importance

* if you want to compute E¢|h] for some function h you can get samples
from fanddo 1/N Z h(z;)

e suppose we dont discard rejected values, but down weight and up weight
them?

e importance sampling samples from g and then reweights those samples by

flg

e the acceptance-rejection process is thus "smoothed" so that every sample
has some role.

e for expectations at the very least, makes the process more efficient than
rejection sampling

@AM 207

Importance sampling

B/t = | f@h(@)da.

Choosing a proposal distribution g(z):

Bylh] = [hie)gle) 2 do = By
(@)
where w(z) = 2(2)

@AM 207

In the samples limit:

Bylh] H&N% e z-)

Since w(x;) = f(x;)/g9(x;):

Unlike rejection sampling we use all samples!!

@AM 207

Variance reduction

Usually: V = Vilh()

Volw(z)h(z)

Importance Sampling: V = N

Minimize V, [w(z)h(z)] (make 0), if:

w(x)h(x) =C = f(x)h(x) = Cg(x),...

@AM 207

f(z)h(z)
C

Gives us g(z) =

To get low variance, we must have g(z) large where
the product f(x)h(x) is large.

or 9&)

f(z)
h(x) is large. This means that choose more samples
near the peak.

, the inverse weight, ought to be large where

@AM 207

The basic idea behind
importance sampling is that we
want to draw more samples
where h(zx), a function whose
integral or expectation we desire,
Is large. In the case we are doing
an expectation, it would indeed A g ahe
be even better to draw more /
samples where h(z) f(x) is large,
where f(x) is the pdf we are
calculating the integral with
respect to.

d h large

jayw samples, large weidQts

many samples, small weights

thick tafl

I /]

@AM 207

Example: integral of x
sin(Xx

mu = 2;

sig =.7;

f = lambda x: np.sin(x)*x

infun = lambda x: np.sin(x)-x*np.cos(x)

p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0%sig**2))
normfun = lambda x: mnorm.cdf(x-mu, scale=sig)

range of integraion

xmax =np.pi

xmin =0

N =1000 # Number of draws

Just want to plot the function

x=np.linspace(xmin, xmax, 1000)

plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$"')

plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.plot(x, np.ones(1000)/np.pi, k")

xis = mu + sig*np.random.randn(N,1);

plt.plot(xis, 1/(np.pi*p(xis)),'."', alpha=0.1)

IMPORTANCE SAMPLING
Iis = np.zeros(1000)
for k in np.arange(0,1000):
DRAW FROM THE GAUSSIAN mean =2 std = sqrt(0.4)
xis = mu + sig*np.random.randn(N,1);
xis = xis[(xis<xmax) & (xis>xmin)] ;
normalization for gaussian from 0. .pi
normal = normfun(np.pi)-normfun(0);
Tis[k] =np.mean(f(xis)/p(xis))*normal;

Exact solution is: 3.14159265359

Mean basic MC estimate: 3.14068341144

Standard deviation of our estimates: ©.0617743877206
Mean importance sampling MC estimate: 3.14197268362
Standard deviation of our estimates: ©0.0161935244302

@AM 207

20 120
= QOriginal zsin(z)

= |mportance Sampling Function: Normal

100

[

0o 0
00 05 1.0 15 20 25 30 28 29 30

Importance Sampling
Vanilla MC

33

30

@AM 207

Statement of the
Learning Problem

The sample must be
representative of the population!

A : Rp(g) smallestonH
B: Rout(g9) =~ Rp(9)

A: Empirical risk estimates in-
sample risk.

B: Thus the out of sample risk is
also small.

What we'd really like: population

l.e. out of sample RISK

(Rout) = Ep(z4) [B(h(),y)] = / dydz p(z,y)R(h(x),y)

 But we only have the in-sample risk, furthermore
its an empirical risk

e And its not even a full on empirical distribution, as
N is usually quite finite

@AM 207

LLN, again
The sample empirical distribution converges to the

true population distributionas N — oo

Then we'll want an average over possible samples
generated from the population.

We dont have that, so we:
e stick to empirical risk in one sample, but then

e engage in train-test, validation, and cross-validation
In our sample
&AM 207

Dataset)

e
—
~—
—
Training Set Test Set

°® —— 1 (from the Lord)
® rTaning
® msting

@AM 207

Emor or risk ——

-— —_—
High Bias Low Bias
Low Variance High Varnance

@AM 207

BALANCE THE
COMPLEXITY

10
degree

OK, SO

Is the In-Sample error small?

GET DERIVATIVES AND MINIMIZE

@AM 207

One way: Newton's Method

,/‘

Find a zero of the first derivative. Need its slope.

Second Derivative or Hessian Matrix: 0 0 R

99; 96,

@AM 207

Gradients and Hessians

J(0) = 67 + 03

Gradient: Vg (J) = % — (;?)
2

Hessian H = (2 O)
0 2

Hessian gives curvature. Why not use it?

@AM 207

MLE for Logistic Regression

e example of a Generalized Linear Model (GLM)

e "Squeeze" linear regression through a Sigmoid
function

e this bounds the output to be a probability

e What is the sampling Distribution?

@AM 207

Sigmoid function

This function is plotted below:

h = lambda z: 1./(14+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Identify: z = w - x and h(w - x)
with the probability that the
sampleisa'l' (y = 1).

@AM 207

1.0

0.8

0.6

04

0.2

0.0

Then, the conditional probabilitiesof y =1 ory =0
given a particular sample's features x are:

P(y = 1|x) = h(w - x)
P(y =0|x) =1 — h(w - x).

These two can be written together as
P(y|x,w) = h(w - x)¥(1 — h(w - x))' ¥

BERNOULLI!"

®AM 207

Multiplying over the samples we get:

P(y|x,w) = P{y; }{x;},w) = H P(y;|x;, w) = H h(w-x;)% (1 — h(w- xi))(l—y,-)

A noisy y is to imagine that our data D was generated
from a joint probability distribution P(x,y). Thus we

need to model y at a given z, written as P(y |), and
since P(x) is also a probability distribution, we have:

P(z,y) = P(y | =z)P(z),

@AM 207

Indeed its important to realize that a particular
sample can be thought of as a draw from some "true"

probability distribution.

maximum likelihood estimation maximises the
likelihood of the sampley,

L=Py|=x,w)
Again, we can equivalently maximize

£ =log(P(y | x,w))

@AM 207

= Zlog(w - X;)Y
y, €D

= Zlogh W - X;
y; €D

=) (yilog(h(w - x
y; €D

@AM 207

Logistic Regression: NLL

The negative of this log likelihood (NLL), also called cross-
entropy.

NLL = - (yilog(h(w - x)) + (1 — y;)log(1 — h(w - x)))

Gradient: V NLL — foil’(pz. —y)=X".(p—w)

Hessian: H = X" diag(p; (1 — p;))X positive definite
— convex

@AM 207

Units based diagram

Input

T~/ \ x;i-w /) =)=
X 9; .——--:I‘ Linear ": — :ll Sigmoid > NLL —+ Cost

/ o o Y (wilog(h(w - x;)) + (1 — y,)log(1 — h(w - x;)))

@AM 207

Gradient ascent
(descent)

basically go opposite the
direction of the derivative.

Consider the objective function:

J(z)=2* -6z +5
gradient = fprime(old_x)

move = gradient * step
current x = old X - move

@AM 207

700

600

500

400

300

200

100

-100

=20 -10 0 10

@AM 207

700

600

500

400

300

200

100

=20

-10

good step size

too big step size

700
600
500
400
300
200

100

=20 -10 0 10

@AM 207

too small step size

700
600
500
400
300
200

100

=20 -10 0 10

@AM 207

Example: Linear Regression

= fo(z) = 6"z

Cost Function:

R(6) = %Zm(Oyl

@AM 207

Gradient Descent.

We want:

Vhlzout (h) — Vh /dxp(way)Rout (h(x)ay)

For a particular sample, use the LLN

. 1 .
Vi Rout (h) ~ Vi~ 2; Rin(h(z:), yi)

@AM 207

Gradient Descent

m

0:=60—nVeR(0) =0—n)» VR;(6)
=1

where n is the learning rate.

ENTIRE DATASET NEEDED

for 1 in range(n_epochs):
params _grad = evaluate gradient(loss function, data, params)
params = params - learning rate * params_grad

@AM 207

Linear Regression:
Gradient Descent

=0, +a2(y(’ fo("))

@AM 207

Stochastic Gradient Descent

0:= 60— aVyR;(0)
ONE POINT AT ATIME

For Linear Regression:

0 := 0; + (¥ — fo(a®))))

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:
params_grad = evaluate gradient(loss function, example, params)
params = params - learning rate * params_grad

@AM 207

Mini-Batch SGD (the most used)

for i in range(mb_epochs):
np.random.shuffle(data)
for batch in get batches(data, batch _size=50):
params_grad = evaluate gradient(loss_function, batch, params)
params = params - learning rate * params_grad

@AM 207

Mini-Batch: do some at a time

e the risk surface changes at each gradient calculation
e thus things are noisy

e cumulated risk is smoother, can be used to compare
to SGD

e epochs are now the number of times you revisit the
full dataset

e shuffle in-between to provide even more stochasticity

@AM 207

&AM 207

