
Lecture 10

Sampling and its use in
Gradient Descent

Last Time

• Exchangeability and the exponen3al model

• Bayesian Regression

• Inverse Transform Sampling

• Rejec3on Sampling

Today:

• Rejec&on Sampling

• Rejec&on Sampling (Steroids) or with majoriza&on

• Logis&c Regression and Gradient Descent

• Stochas&c Gradient Descent (simple)

• Importance Sampling and expecta&ons

Ok. We need Samples

• to compute expecta,ons, integrals and do
sta,s,cs, we need samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to
do integrals and expecta,ons

Inverse transform

algorithm

The CDF must be inver1ble!

1. get a uniform sample from

2. solve for yielding a new equa8on
where is the CDF of the distribu8on we desire.

3. repeat.

For exponen)al,

code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
generate uniform samples in our range then invert the CDF
to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()

Rejec%on Sampling

• Generate samples from a uniform distribu3on with
support on the rectangle

• See how many fall below at a specific x.

Rejec%on Sampling Algorithm

1. Draw uniformly from

2. Draw uniformly from

3. if , accept the sample

4. otherwise reject it

5. repeat

example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
 # pick a uniform number on [xmin, xmax) (e.g. 0...10)
 x = np.random.uniform(xmin, xmax)
 # pick a uniform number on [0, ymax)
 y = np.random.uniform(0,ymax)
 # Do the accept/reject comparison
 if y < P(x):
 samples[accepted] = x
 accepted += 1

 count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000

problems

• determining the supremum may be costly

• the func6onal form may be complex for
comparison

• even if you find a 6ght bound for the supremum,
basic rejec6on sampling is very inefficient: low
acceptance probability

• infinite support

Variance
Reduc&on

Rejec%on on steroids

Introduce a proposal density
such that the support of is within
the support of .

• is easy to sample from
andcalculate the pdf)

• Some exists so that
 in your en7re

domain of interest

• op7mal value for M is the
supremum over your domain of
interest of .

• probability of acceptance is

Algorithm

1. Draw from your proposal
distribu4on

2. Draw uniformly from [0,1]

3. if , accept the
sample

4. otherwise reject it

5. repeat

Example

p = lambda x: np.exp(-x) # our distribution
g = lambda x: 1/(x+1) # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

 # Sample from g using inverse sampling
 u = np.random.uniform(umin, umax)
 xproposal = np.exp(u) - 1

 # pick a uniform number on [0, 1)
 y = np.random.uniform(0,1)

 # Do the accept/reject comparison
 if y < p(xproposal)/g(xproposal):
 samples[accepted] = xproposal
 accepted += 1

 count +=1

print("Count", count, "Accepted", accepted)
get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000

Rejec%on sampling (steroids)

• ideally will be somewhat close to

• large values of M imply lower efficiency

• can do empirical supremum rejec-on sampling:

At chosen according to , choose ini0al M, compare
to , and choose new .

Repeat.

Rejec%on to Importance
• if you want to compute for some func2on you can get samples

from and do

• suppose we dont discard rejected values, but down weight and up weight
them?

• importance sampling samples from and then reweights those samples by

• the acceptance-rejec2on process is thus "smoothed" so that every sample
has some role.

• for expecta2ons at the very least, makes the process more efficient than
rejec2on sampling

Importance sampling

Choosing a proposal distribu1on :

where

In the samples limit:

Since :

Unlike rejec+on sampling we use all samples!!

Variance reduc+on

Usually:

Importance Sampling:

Minimize (make 0), if:

...

Gives us

To get low variance, we must have large where
the product is large.

Or, , the inverse weight, ought to be large where

 is large. This means that choose more samples
near the peak.

The basic idea behind
importance sampling is that we
want to draw more samples
where , a func7on whose
integral or expecta7on we desire,
is large. In the case we are doing
an expecta7on, it would indeed
be even be<er to draw more
samples where is large,
where is the pdf we are
calcula7ng the integral with
respect to.

Example: integral of x
sin(x)

mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)
range of integraion
xmax =np.pi
xmin =0
N =1000 # Number of draws

Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.plot(x, np.ones(1000)/np.pi,'k')
xis = mu + sig*np.random.randn(N,1);
plt.plot(xis, 1/(np.pi*p(xis)),'.', alpha=0.1)

IMPORTANCE SAMPLING
Iis = np.zeros(1000)
for k in np.arange(0,1000):
 # DRAW FROM THE GAUSSIAN mean =2 std = sqrt(0.4)
 xis = mu + sig*np.random.randn(N,1);
 xis = xis[(xis<xmax) & (xis>xmin)] ;
 # normalization for gaussian from 0..pi
 normal = normfun(np.pi)-normfun(0);
 Iis[k] =np.mean(f(xis)/p(xis))*normal;

Exact solution is: 3.14159265359
Mean basic MC estimate: 3.14068341144
Standard deviation of our estimates: 0.0617743877206
Mean importance sampling MC estimate: 3.14197268362
Standard deviation of our estimates: 0.0161935244302

Statement of the
Learning Problem

The sample must be
representa/ve of the popula/on!

A: Empirical risk es/mates in-
sample risk.
B: Thus the out of sample risk is
also small.

What we'd really like: popula3on

i.e. out of sample RISK

• But we only have the in-sample risk, furthermore
its an empirical risk

• And its not even a full on empirical distribu<on, as
N is usually quite finite

LLN, again

The sample empirical distribu1on converges to the
true popula1on distribu1on as

Then we'll want an average over possible samples
generated from the popula7on.

We dont have that, so we:

• s#ck to empirical risk in one sample, but then

• engage in train-test, valida#on, and cross-valida#on
in our sample

BALANCE THE
COMPLEXITY

OK, SO
Is the In-Sample error small?

GET DERIVATIVES AND MINIMIZE

One way: Newton's Method

Find a zero of the first deriva1ve. Need its slope.

Second Deriva-ve or Hessian Matrix:

Gradients and Hessians

Gradient:

Hessian H =

Hessian gives curvature. Why not use it?

MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid
func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?

Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy: and
with the probability that the
sample is a '1' ().

Then, the condi,onal probabili,es of or
given a par,cular sample's features are:

These two can be wri/en together as

BERNOULLI!!

Mul$plying over the samples we get:

A noisy is to imagine that our data was generated
from a joint probability distribu7on . Thus we
need to model at a given , wri<en as , and
since is also a probability distribu7on, we have:

Indeed its important to realize that a par1cular
sample can be thought of as a draw from some "true"
probability distribu1on.

 maximum likelihood esmaon maximises the
likelihood of the sample y,

Again, we can equivalently maximize

Thus

Logis&c Regression: NLL

The nega(ve of this log likelihood (NLL), also called cross-
entropy.

Gradient:

Hessian: posi+ve definite
 convex

Units based diagram

Gradient ascent
(descent)

basically go opposite the
direc1on of the deriva1ve.

Consider the objec/ve func/on:

gradient = fprime(old_x)
move = gradient * step
current_x = old_x - move

good step size

too big step size

too small step size

Example: Linear Regression

Cost Func*on:

Gradient Descent.

We want:

For a par'cular sample, use the LLN

Gradient Descent

where is the learning rate.

ENTIRE DATASET NEEDED

for i in range(n_epochs):
 params_grad = evaluate_gradient(loss_function, data, params)
 params = params - learning_rate * params_grad`

Linear Regression:
Gradient Descent

Stochas(c Gradient Descent

ONE POINT AT A TIME

For Linear Regression:

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function, example, params)
 params = params - learning_rate * params_grad

Mini-Batch SGD (the most used)

for i in range(mb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data, batch_size=50):
 params_grad = evaluate_gradient(loss_function, batch, params)
 params = params - learning_rate * params_grad

Mini-Batch: do some at a 1me

• the risk surface changes at each gradient calcula2on

• thus things are noisy

• cumulated risk is smoother, can be used to compare
to SGD

• epochs are now the number of 2mes you revisit the
full dataset

• shuffle in-between to provide even more stochas2city

