
Lecture 10

Sampling and its use in 
Gradient Descent



Last Time

• Exchangeability and the exponen3al model

• Bayesian Regression

• Inverse Transform Sampling

• Rejec3on Sampling



Today:

• Rejec&on Sampling

• Rejec&on Sampling (Steroids) or with majoriza&on

• Logis&c Regression and Gradient Descent

• Stochas&c Gradient Descent (simple)

• Importance Sampling and expecta&ons



Ok. We need Samples

• to compute expecta,ons, integrals and do 
sta,s,cs, we need samples

• we start that journey today

• inverse transform

• rejec,on sampling

• importance sampling: a direct, low-variance way to 
do integrals and expecta,ons



Inverse transform



algorithm

The CDF  must be inver1ble!

1. get a uniform sample  from 

2. solve for  yielding a new equa8on  
where  is the CDF of the distribu8on we desire.

3. repeat.

For exponen)al, 



code

p = lambda x: np.exp(-x)
CDF = lambda x: 1-np.exp(-x)
invCDF = lambda r: -np.log(1-r) # invert the CDF
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
hinfo = np.histogram(X,100)
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.legend()



Rejec%on Sampling

• Generate samples from a uniform distribu3on with 
support on the rectangle

• See how many fall below  at a specific x.



Rejec%on Sampling Algorithm

1. Draw  uniformly from 

2. Draw  uniformly from 

3. if , accept the sample

4. otherwise reject it

5. repeat



example

P = lambda x: np.exp(-x)
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
ymax = 1
#you might have to do an optimization to find this.
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):
    # pick a uniform number on [xmin, xmax) (e.g. 0...10)
    x = np.random.uniform(xmin, xmax)
    # pick a uniform number on [0, ymax)
    y = np.random.uniform(0,ymax)
    # Do the accept/reject comparison
    if y < P(x):
        samples[accepted] = x
        accepted += 1

    count +=1

print("Count",count, "Accepted", accepted)
hinfo = np.histogram(samples,30)
plt.hist(samples,bins=30, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*P(xvals), 'r', label=u'P(x)')
plt.legend()

Count 100294 Accepted 10000



problems

• determining the supremum may be costly

• the func6onal form may be complex for 
comparison

• even if you find a 6ght bound for the supremum, 
basic rejec6on sampling is very inefficient: low 
acceptance probability

• infinite support



Variance
Reduc&on



Rejec%on on steroids

Introduce a proposal density  
such that the support of  is within 
the support of .

•  is easy to sample from 
andcalculate the pdf)

• Some  exists so that 
 in your en7re 

domain of interest

• op7mal value for M is the 
supremum over your domain of 
interest of .

• probability of acceptance is 



Algorithm

1. Draw  from your proposal 
distribu4on 

2. Draw  uniformly from [0,1]

3. if , accept the 
sample

4. otherwise reject it

5. repeat



Example

p = lambda x: np.exp(-x)  # our distribution
g = lambda x: 1/(x+1)  # our proposal pdf (we're thus choosing M to be 1)
invCDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
# range limits for inverse sampling
umin = invCDFg(xmin)
umax = invCDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals

while (accepted < N):

    # Sample from g using inverse sampling
    u = np.random.uniform(umin, umax)
    xproposal = np.exp(u) - 1

    # pick a uniform number on [0, 1)
    y = np.random.uniform(0,1)

    # Do the accept/reject comparison
    if y < p(xproposal)/g(xproposal):
        samples[accepted] = xproposal
        accepted += 1

    count +=1

print("Count", count, "Accepted", accepted)
# get the histogram info
hinfo = np.histogram(samples,50)
plt.hist(samples,bins=50, label=u'Samples');
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
plt.plot(xvals, hinfo[0][0]*g(xvals), 'k', label=u'g(x)')
plt.legend()

Count 23809 Accepted 10000



Rejec%on sampling (steroids)

• ideally  will be somewhat close to 

• large values of M imply lower efficiency

• can do empirical supremum rejec-on sampling:

At  chosen according to , choose ini0al M, compare 
to , and choose new . 

Repeat.



Rejec%on to Importance
• if you want to compute  for some func2on  you can get samples 

from  and do 

• suppose we dont discard rejected values, but down weight and up weight 
them?

• importance sampling samples from  and then reweights those samples by 

• the acceptance-rejec2on process is thus "smoothed" so that every sample 
has some role.

• for expecta2ons at the very least, makes the process more efficient than 
rejec2on sampling



Importance sampling

Choosing a proposal distribu1on :

where 



In the samples limit:

Since :

Unlike rejec+on sampling we use all samples!!



Variance reduc+on

Usually: 

Importance Sampling: 

Minimize  (make 0), if:

...



Gives us 

To get low variance, we must have  large where 
the product  is large.

Or, , the inverse weight, ought to be large where 

 is large. This means that choose more samples 
near the peak.



The basic idea behind 
importance sampling is that we 
want to draw more samples 
where , a func7on whose 
integral or expecta7on we desire, 
is large. In the case we are doing 
an expecta7on, it would indeed 
be even be<er to draw more 
samples where  is large, 
where  is the pdf we are 
calcula7ng the integral with 
respect to.



Example: integral of x 
sin(x)

mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x:  norm.cdf(x-mu, scale=sig)
# range of integraion
xmax =np.pi
xmin =0
N =1000 # Number of draws

# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.plot(x, f(x), 'b', label=u'Original  $x\sin(x)$')
plt.plot( x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.plot(x, np.ones(1000)/np.pi,'k')
xis = mu + sig*np.random.randn(N,1);
plt.plot(xis, 1/(np.pi*p(xis)),'.', alpha=0.1)

# IMPORTANCE SAMPLING
Iis = np.zeros(1000)
for k in np.arange(0,1000):
    # DRAW FROM THE GAUSSIAN mean =2 std = sqrt(0.4)
    xis = mu + sig*np.random.randn(N,1);
    xis = xis[ (xis<xmax) & (xis>xmin)] ;
    # normalization for gaussian from 0..pi
    normal = normfun(np.pi)-normfun(0);
    Iis[k] =np.mean(f(xis)/p(xis))*normal;

Exact solution is:  3.14159265359
Mean basic MC estimate:  3.14068341144
Standard deviation of our estimates:  0.0617743877206
Mean importance sampling MC estimate:  3.14197268362
Standard deviation of our estimates:  0.0161935244302



Statement of the 
Learning Problem

The sample must be 
representa/ve of the popula/on!

A: Empirical risk es/mates in-
sample risk.
B: Thus the out of sample risk is 
also small.



What we'd really like: popula3on

i.e. out of sample RISK

• But we only have the in-sample risk, furthermore 
its an empirical risk

• And its not even a full on empirical distribu<on, as 
N is usually quite finite



LLN, again

The sample empirical distribu1on converges to the 
true popula1on distribu1on as 

Then we'll want an average over possible samples 
generated from the popula7on.

We dont have that, so we:

• s#ck to empirical risk in one sample, but then

• engage in train-test, valida#on, and cross-valida#on 
in our sample





BALANCE THE 
COMPLEXITY



OK, SO
Is the In-Sample error small?

GET DERIVATIVES AND MINIMIZE



One way: Newton's Method

Find a zero of the first deriva1ve. Need its slope. 

Second Deriva-ve or Hessian Matrix: 



Gradients and Hessians

Gradient: 

Hessian H = 

Hessian gives curvature. Why not use it?



MLE for Logis+c Regression
• example of a Generalized Linear Model (GLM)

• "Squeeze" linear regression through a Sigmoid 
func>on

• this bounds the output to be a probability

• What is the sampling Distribu>on?



Sigmoid func,on

This func*on is plo.ed below:

h = lambda z: 1./(1+np.exp(-z))
zs=np.arange(-5,5,0.1)
plt.plot(zs, h(zs), alpha=0.5);

Iden%fy:  and  
with the probability that the 
sample is a '1' ( ).



Then, the condi,onal probabili,es of  or  
given a par,cular sample's features  are:

These two can be wri/en together as

BERNOULLI!!



Mul$plying over the samples we get:

A noisy  is to imagine that our data  was generated 
from a joint probability distribu7on . Thus we 
need to model  at a given , wri<en as , and 
since  is also a probability distribu7on, we have:



Indeed its important to realize that a par1cular 
sample can be thought of as a draw from some "true" 
probability distribu1on.

 maximum likelihood es$ma$on maximises the 
likelihood of the sample y,

Again, we can equivalently maximize



Thus



Logis&c Regression: NLL

The nega(ve of this log likelihood (NLL), also called cross-
entropy.

Gradient: 

Hessian:  posi+ve definite 
 convex



Units based diagram



Gradient ascent 
(descent)

basically go opposite the 
direc1on of the deriva1ve.

Consider the objec/ve func/on: 

gradient = fprime(old_x)
move = gradient * step
current_x = old_x - move



good step size



too big step size



too small step size



Example: Linear Regression

Cost Func*on:



Gradient Descent.

We want:

For a par'cular sample, use the LLN



Gradient Descent

where  is the learning rate.

ENTIRE DATASET NEEDED

for i in range(n_epochs):
  params_grad = evaluate_gradient(loss_function, data, params)
  params = params - learning_rate * params_grad`



Linear Regression: 
Gradient Descent



Stochas(c Gradient Descent

ONE POINT AT A TIME

For Linear Regression: 

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad



Mini-Batch SGD (the most used)

for i in range(mb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data, batch_size=50):
    params_grad = evaluate_gradient(loss_function, batch, params)
    params = params - learning_rate * params_grad



Mini-Batch: do some at a 1me

• the risk surface changes at each gradient calcula2on

• thus things are noisy

• cumulated risk is smoother, can be used to compare 
to SGD

• epochs are now the number of 2mes you revisit the 
full dataset

• shuffle in-between to provide even more stochas2city




