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When?

Monday 12pm - 1.15pm, Lecture. Compulsory to attend. NW
B101.

Wednesday 12pm - 1.15pm, Lecture. Compulsory to attend. NW
B101.

Fridays 12pm - 1.15pm Lab. Compulsory to attend. Pierce 301.
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Who

Instructor:

Rahul Dave

TFs:

e Patrick Ohiomoba
e Srivatsan Srinivasan

e /Zongren Zou
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This is a course on:

Stochastic Optimization or Derivatives
Stochastic Expectations or Integration

in the service of

Modeling and Inference

@AM 207



Why take this course?

e |earn how to think in principled ways of modeling..why..not just
how..

e ..using bayesian statistics which is far more natural, and which
has applications in almost every field

e understand deeply how and why machine leaning works

e |earn generative models so that you can understand NNs, GANSs
better
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e |learn how to regularize models

e deal with data computationally large/small and statistically small/
large

e learn how to optimize objective functions such as loss functions
using Stochastic Gradient Descent and Simulated annealing

e Perform sampling and MCMC to solve a variety of problems

e Learn how and when to use parametric and non-parametric
stochastic processes
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What sorts of problems?

e machine learning hyperparameter optimization

e generalize A/B testing using Bandits (eg see https:/
support.google.com/analytics/answer/28448707?hl=en)

e generative modeling of images (see https:/blog.openai.com/
generative-models/)

e many problems in psychology, ecology, phylogenetics, public
policy, etc
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Why not?
e this is a hard course. you will have to work hard. especially on
your own
e there is alot of homework

e you do not have the requisite background

* yOU are a statistics expert
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Modules

e stats review and sampling

e optimization and machine learning; stochastic optimization
e Bayesian concepts and density estimation

e MCMC and other algorithms to obtain posteriors

e Bayesian regression and glms

e Model checking, comparison, and selection

e Variational Bayes

e EXTRA: Time dependent, non-iid models, Non-parametric Bayes, or Autoencoders
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optimization

(Simulated Annealing, Wikipedia)
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Learns a generative model! Unsupervised learning! (EM, Bishop)
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Differentiation vs Integration

e optimize a loss function: SGD, EM, etc

OR

e calculate an Expectation or a marginalization: numerical
integration, monte carlo, MCMC

e two sides of the same coin
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Bayesian statistics

Small world:
P9 D) — P(D‘Po()D); P(6)
Big World:
p(i1 | D) — PO M) x P(M)




Bayesian Analysis for Higgs
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Posterior, updated
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Machine learning and Generative
Models
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Whats up with these counties?

Kidney Cancer

§ I "[

%,5&?

Counties with the lowest kidney cancer death rates

Source: Gelman et. al. Bayesian Data Anaylsis, CRC Press, 2004.
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And with these?

Kidney Cancer
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Source: Gelman et. al. Bayesian Data Anaylsis, CRC Press, 2004.
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Hierarchical Model with regularization
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glms

Monks in monastery i (indicator z;) produce y; manuscripts a day.

Poisson likelihood and logarithmic link

Model:

y; ~ Poisson(\;)

log(\;) = a + Bx;
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dynamical systems

hidden markov models
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gaussian processes

nonparametric, prior on functions...

output, f(x)

-5 0 5 -5 0 5
input, x input, x
(a), prior (b), posterior
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Concepts running through:
Hidden Variables
Marginalizing over nuisance
parameters
Differentiation vs Integration
Frequentist vs Bayesian
Generative Models
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Overall concept: Box's

(image from David Blei's paper on hidden variables)
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Build model

Mixtures and mixed-membership models,
time-series models, generalized linear models,
factor models, Bayesian nonparametrics

K

DATA

i

Infer hidden quantities

Markow chain Monte Carlo,
variational inference,
Laplace approximation

1

Apply model

Predictive systems,
data exploration,
data summarization

Criticize model

Parformance on a task,
prediction on unseen data,
posterior predictive checks

REVISE MODEL

Loop



Requirements

e you Will need to know how to program numerical python

e you will need to have a background in stats and simple
distributions at least although we will review concepts whenever
needed. Its better when you are reviewing concepts than
learning it for the first time

e you should be comfortable with matrix manipulations and
calculus. You should have a passing knowledge of multivariate
calculus.

&AM 207



What kind of course?

e grad level course though nothing is really grad level hard

e if you have machine learning background you will make a lot of
mental connections.

e | am your emcee; its my job to incorporate info and
understanding from various places.

e probably harder than cs181 but simpler than cs281. Ideal in-
between course.
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Structure of the course

e |ectures (2 per week), compulsory

e |ab (you will play), compulsory

e homework (every week)

* paper

e final exam (a glorified project-ish homework)

e readings
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e there will be readings most weeks, some made available a lecture
or two ahead

e preliminary notes will made available a lecture or two ahead..you
should read these before class

 notes will be updated towards the time of the lecture

e |lecture slides will be made available just before or after the
lecture
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e homework will be made available every week Fri evening or
Saturday Morning; is due every week friday 11.59pm. should
take 7-8 hours

e expect another 6-7 hours of reading, including both before and
after lecture
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AM207/ Class Infrastructure

e Website am207/.info
e Join Piazza
e Join Slack

e We may add Twitter if we're feeling adventurous so stay posted
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https://am207.info
https://piazza.com/class/jlo4e4ari3r4wd
https://join.slack.com/t/am207-2018fallclass/shared_invite/enQtNDMwOTE5ODk1MzM0LTg4M2U2NDcxOTJiZTliMzY0YmExZGIxNTM3MTA5OGU5MmIwZGZlZmU0MDI1OWM0ODVkODA1ZGM2NGFmM2EzZWQ

AM20/ Piazza

e Besides the website and Canvas, Piazza is the main information
channel from course staff to students. Make sure to read and
participate

 We keep relevant posts (OHs, HW information, etc) pinned.

e We'll send announcements via Piazza and they'll send
notification emails. Pay attention to those.

 Make sure to submit the OH Poll currently in a pinned post
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AM207/ Slack

e Please use for asking questions during lecture and lab (if you're not
present to raise your hand and ask)

e The channel for the current lecture is #lecture
e The channel for the current lab is #lab
e We'll rename after class/lab to #lectureN and #labM

 Don't abuse (we'll announce any other future appropriate uses on
Piazza)
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Advice from your TFs

e Collaboration -- if you collaborate for assignments (HW and Paper/
Tutorial) for which we allow students to work together PLEASE
PLEASE SUBMIT ONE ASSIGNMENT.

e Contacting Teaching Staff* -- We pride ourselves on being
available. Please come to OH (the class will be a lot easier if you do

SO).

 You can also email us at am207/.info. Right now we have aliases for
grading (grading@) and info (info@) .
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Probability

frequentist probability of heads
0525 cq P ty

e from symmetry

0520

e from a model, and combining beliefs
and data: Bayesian Probability
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Random Variables

Definition. A random variable is a mapping

X: 00— R

that assigns a real number X (w) to each outcome w.
- ) is the sample space. Points

- w In  are called sample outcomes, realizations, or elements.
- Subsets of (2 are called Events.
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An example with 2 coin tosses

0  Eisthe event of getting a heads in a
l EForEnF ~ E+F first coin toss, and F is the same for a

second coin toss.

g
e (is the set of all possibilities that can
happen when you toss two coins:
{HH,HT,TH,TT}
-

E+F(orEUF)
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Fundamental rules of probability:

1. p(X) >= 0; probability must be non-negative
2.0<p(X) <1
3. p(X) + p(X ) =1 either happen or not happen.

4. p(X+Y)=p(X)+p(Y) - pX,Y)
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 Sayw = HHTTTTHTT then X(w) = 3 if defined as number of
heads in the sequence w.

 We will assign a real number P(A) to every event A, called the
probability of A.

e We also call P a probability distribution or a probability measure.
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A Murder Mystery



"As the clock strikes midnight in the Old Tudor Mansion, a raging storm
rattles the shutters and fills the house with the sound of thunder. The
dead body of Mr Black lies slumped on the floor of the library, blood still
00zing from the fatal wound. Quick to arrive on the scene is the famous
sleuth Dr Bayes, who observes that there were only two other people in
the Mansion at the time of the murder. So who committed this dastardly
crime? Was it the fine upstanding pillar of the establishment Major
Grey? Or was it the mysterious and alluring femme fatale Miss Auburn?

We represent the murderer with a random variable murderer
whose value we dont know. This variable equals either Auburn or
Grey.
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Priors

"From what we know about our two
characters, we might think it is unlikely that
someone with the impeccable credentials of

Major Grey could commit such a heinous
crime, and therefore our suspicion is directed
towards the enigmatic Miss Auburn.

Therefore, we might assume that the
probability that Miss Auburn committed the

crime is 70%, or equivalently 0.7."

p(murderer = Auburn) = 0.7

@AM 207

1.00

«——0.30
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0.70
Murderer




Bernoulli Distribution

The "prior" distribution for murder is the Bernoulli.

Say a coin flip represented as X, where X = 1 is heads, and X = 0
is tails. The parameter is probability of heads p.

X ~ Bernoulli(p)

is to be read as X has distribution Bernoulli(p).
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"Dr Bayes searches the mansion
thoroughly. He finds that the only
wedapons available are an ornate
ceremonial dagger and an old army
revolver. “One of these must be the

murder weapon’, he concludes.”
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Evidence and conditional probability

We thus introduce a new random variable weapon, in addition to the existing random
variable murderer.

"Suppose Major Grey were the murderer. We might believe that the probability of his
choosing a revolver rather than a dagger for the murder is, say, 90% on the basis that he is
ex-military and would be familiar with the use of guns. But if instead Miss Auburn were the
murderer, we might think the probability of her using a revolver would be much smaller, say

20%, on the basis that she is unlikely to be familiar with the operation of an old revolver and
is therefore more likely to choose the dagger. This means that the probability distribution
over the random variable weapon depends on whether the murderer is Major Grey or Miss
Auburn. This is known as a conditional probability distribution because the probability
values it gives vary depending on another random variable, in this case murderer.”
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p(weapon = revolver | murderer = grey) = 0.9
p(weapon = revolver | murderer = auburn) = 0.2

1.00 > € 1.00
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The joint Probability distribution

| 2

P(weapon,murderer) P(murderer) P(weapon|murderer)
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A probabilistic model is:

e A set of random variables,

e Ajoint probability distribution over these variables (i.e. a distribution
that assigns a probability to every configuration of these variables such
that the probabilities add up to 1 over all possible configurations).

Now we condition on some random variables and learn the values of
others.

(paraphrased from Model Based Machine Learning)
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Rules
1. P(A,B) = P(A | B)P(B)
2.P(A)=) P(A,B)=)» P(A|B)P(B)

P(A) is called the marginal distribution of A, obtained by summing
or marginalizing over B.
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Marginals and
Conditionals

More generally for hidden variables z:

p(z) =Y p(z,2) = > p(z(2)p(2)



Observation

Searching carefully around the library, Dr Bayes spots a bullet lodged in
the book case. "Hmm, interesting’, he says, “l think this could be an
important clue’.
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Inference

The process of computing revised probability
distributions after we have observed the
values of some the random variables, is
called inference.

P(murderer = Grey|weapon = revolver) =

0.27

~ (.60
0.27+0.14

This posterior probability is higher than
prior 0.3.

0.70 >
Murderer
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Inference: a pricipled way from prior to posterior

«——0.30 > € 0.70 > € 0.66 > € 0.34——
Murderer Murderer
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Bayes Theorem: Inference without computing the joint
distribution

Why? The joint can be computationally hard. Sometimes there are
two many "factors”

p(z |y)p(y) p(z|y)p(y) p(z | y) p(y)

PVIo) =" TS pey) S, e | 1))
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P(weapon|murderer) P(murderer)

P(murderer|weapon) = B |
weapon

P(weapon) = Z P(weapon|murderer) P(murderer)

murderer

, likelihood X prior
posterior = . :
evidence

The evidence is just a normalizer and can often be ignored.

The likelihood function is NOT a probability distribution over weapon
(which is known!). It is a function of the random variable murderer.
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0.70
Murderer

Just ignore the fact that we are in a square!
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| ets get precise



Cumulative distribution Function

The cumulative distribution function, or the CDF, is a function
Fx :R — [0,1],
defined by
Fx(z) =p(X < z).

Sometimes also just called distribution.
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Let X be the random variable representing the number of heads in
two coin tosses. Then £ =0, 1 or 2.

CDF:

FX ((I)) 4
1 O——
1Ot O—)
00+
r
0 1 2 T
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Probability Mass Function

X is called a discrete random variable if it takes countably many
values {513‘1,5132, .. }

We define the probability function or the probability mass
function (pmf) for X by:
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The pmf for the number of heads in two coin tosses:

fx(z)

-

3
OtH

Tt

A
(g
ot
— p—
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Probability Density function (pdf)

A random variable is called a continuous random variable if there
exists a function fx such that fx(x) > 0 for all x,

/ fx(x)dx = 1 and for every a < b,

b
pla< X <b) = / fx(x)dx

Note: p(X = x) = 0 for every z. Confusing!
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CDF for continuous random variables

Fx() = [  Fx(t)dt

and fy(a) = LX)

Continuous pdfs can be > 1. cdfs bounded in [0,1].

at all points x at which F'yx is differentiable.
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A continuous example: the Uniform(0,1) Distribution

1 for0<z<1
0 otherwise.

fx(z) = {

cdf:
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cdf:
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Marginals

Marginal mass functions are defined in analog to probabilities:

fx(z)=p(X=2)=)> flz,y); fr¥) =pY =y)=)» f(z,9).
Yy T
Marginal densities are defined using integrals:

Fx(z) = / dyf(z,y); fr(y) = / dzf(z,y).
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probability.html

Conditionals

Conditional mass function is a conditional probability:

fxiy(z|y) =p(X =2z |Y =y) = pX=zY=y) _ fxv(zy)

p(Y = y) fr(y)

The same formula holds for densities with some additional
requirements fy (y) > 0 and interpretation:

pXEA|Y=9)= [ furley)ds
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Bernoulli pmf:

for p in the range O to 1.

flz)=p"(1—p)**
for x in the set {0,1}.
What is the cdf?
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from scipy.stats import bernoulli
#bernoullli random variable

brv=bernoulli(p=0.3)
print(brv.rvs(size=20))

[100010011000001100109]
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Election forecasting

e Each state has a Bernoulli coin.

e p for each state can come from prediction markets, models, polls
e Many simulations for each state. In each simulation:
o rv = Uniform(0,1) If. rv < p say Obama wins

* or rv = Bernoulli(p). 1=Obama.
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Empirical pmf and cdf

Chance of Obama Victory: 99.55%, Spread: 59 votes
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The big ldeas

e 3 data story

e inference using the data story
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Data story

e a story of how the data came to be.

e may be a causal story, or a descriptive one (correlational,
associative).

 The story must be sufficient to specify an algorithm to simulate
new data.

e a formal probability model.
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tossing a globe in the air experiment

e toss and catch it. When you catch it, see whats under index
finger

e mark W for water, L for land.
e figure how much of the earth is covered in water

e thus the "data" is the fraction of W tosses
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Probabilistic Model

1. The true proportion of water is p.

2. Bernoulli probability for each globe toss, where p is thus the
probability that you get a W. This assumption is one of being
Identically Distributed.

3. Each globe toss is Independent of the other.

Assumptions 2 and 3 taken together are called IID, or Independent
and Identially Distributed Data.
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Next time

e Expectation values
e Law of large numbers
e How it enables empirical distributions

e And Monte Carlo

e Central Limit theorem for sampling and error on expectations
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